2020 年度 修士学位論文

Belle II 実験 ARICH 検出器アップグレードのための 信号読み出し集積回路の開発

指導教員 角野秀一 教授

東京都立大学大学院 理学研究科 物理学専攻

博士前期課程2年 高エネルギー物理実験研究室

19844418 鶴藤昌人

2021年1月8日

現在の素粒子物理学において,標準模型はニュートリノの振動現象を除いてこれまでに観測され たあらゆる素粒子実験の結果を矛盾なく説明する強力な理論である。しかしながら標準模型には重 力が含まれておらず、また階層性の問題や、暗黒物質の候補となる粒子が存在しない、などといっ た不十分な側面がある。

Belle II 実験は、茨城県つくば市の高エネルギー加速器研究機構(KEK)で行われている、標準 模型を超える新物理を探索することを目的とした B ファクトリー実験である。KEK 構内に設置さ れている電子・陽電子衝突型加速器 SuperKEKB により、電子 7 GeV と陽電子 4 GeV を衝突さ せることで B 中間子対を大量に生成し、その崩壊過程に含まれるごく稀な事象を観測することで 新しい物理現象を見つけようとしている。

同実験における測定器である Belle II 測定器は、電子・陽電子ビームの衝突点に設置され、役割 によって最適な動作原理を持った 7 つの装置を組合わせた複合型検出器である。Belle II 測定器で 測定するのは崩壊により生成された安定粒子であり、主に電子、μ粒子、π粒子、K粒子、陽子と いった荷電粒子を識別できる。

Belle II 測定器に搭載されている検出器の一つである Aerogel Ring Imaging Cherenkov counter (ARICH)は、Belle II 測定器の前方エンドキャップ部において、主に荷電 π/K 中間子の粒子識 別という役割を担っている。ARICH は輻射体シリカエアロゲルと光検出器 Hybrid Avalanche Photo Detector (HAPD)の2層構造で、荷電粒子がシリカエアロゲル内を通過する際に円錐状に 発生するチェレンコフ光を、HAPDで2次元のリングイメージとして観測し、その測定したリン グの半径から放射角を導出することで荷電 π/K 中間子の識別が可能となる。現在、この ARICH はアップグレードが計画されており、HAPD に代わる新たな光検出器として MPPC (Multi-Pixel Photon Counter)の使用が検討されている。それに伴い、光検出器からの信号を読み出す回路に ついても新たなシステムの開発が必要となった。

本研究では、新たに ARICH のための MPPC 用信号読み出し ASIC のプロトタイプである TF01A64 を開発した。TF01A64 は MPPC64 チャンネルの信号読み出しが可能で、基本回路構成 として増幅器-波形整形器-増幅器-オフセット調整回路-比較器を持つ。開発においては T-Spice と 呼ばれる回路シミュレーターを用いて、回路特性や回路雑音の評価、高レート下における応答能力 の見積もりなどを行った。また、本研究ではこの TF01A64 チップの性能評価のためのテストボー ドを作成し、TF01A64 回路の機能として搭載されているテストパルスを用いた動作確認を行った。 この確認により、各種パラメーターの設定、増幅率調整やオフセット調整などについての正常な動 作を確かめることができた。

目次

序論	9
素粒子標準模型と CP 対称性の破れ	9
1.1.1 標準模型	9
1.1.2 CP 対称性の破れ	10
1.1.3 CKM 行列	11
B の物理と B ファクトリー	13
Belle 実験から Belle II 実験へ	15
Belle II 実験	17
SuperKEKB 加速器	17
2.1.1 概要	17
2.1.2 性能	19
ビームバックグラウンド	20
2.2.1 ビーム由来	21
2.2.2 衝突事象由来	21
Belle II 測定器	22
2.3.1 VXD (PXD, SVD)	24
2.3.2 CDC	25
2.3.3 TOP	26
2.3.4 ARICH	26
2.3.5 ECL	27
2.3.6 超伝導ソレノイド電磁石	28
2.3.7 KLM	29
2.3.8 トリガーシステムと DAQ	30
Belle II で期待される新物理...............................	31
Belle II 実験のシフト体制とコミッショニング	33
2.5.1 シフト体制	33
2.5.2 コミッショニングと今後の見通し	33
	序論 素粒子標準模型とCP対称性の破れ 1.1.1 標準模型 1.1.2 CP対称性の破れ 1.1.3 CKM 行列 B の物理とBファクトリー Belle 実験から Belle II 実験へ Belle 実験から Belle II 実験へ Belle 実験から Belle II 実験へ SuperKEKB 加速器 2.1.1 概要 2.1.2 性能 ビームパックグラウンド 2.2.1 ビーム由来 2.2.2 衝突事象由来 Belle II 測定器 2.3.1 VXD (PXD, SVD) 2.3.2 CDC 2.3.3 TOP 2.3.4 ARICH 2.3.5 ECL 2.3.6 超伝導ソレノイド電磁石 2.3.7 KLM 2.3.8 トリガーシステムと DAQ Belle II 実験のシフト体制とコミッショニング 2.5.1 シフト体制 2.5.2 コミッショニングと今後の見通し

第3章	ARICH 検出器	36
3.1	ARICH 検出器の原理	36
	3.1.1 チェレンコフ光の発生原理	36
	3.1.2 粒子識別原理	37
3.2	ARICH 検出器への要求性能	39
3.3	ARICH 検出器の構造と構成要素	39
	3.3.1 輻射体シリカエアロゲル	40
	3.3.2 光検出器 HAPD	42
	3.3.3 読み出しシステム	44
	3.3.4 その他の構成要素	46
第4章	ARICH における光検出器と読み出しシステムのアップグレード	48
4.1	光検出器 HAPD の現状	48
4.2	新たな光検出器候補 MPPC	48
	4.2.1 動作原理と構造	49
	4.2.2 選定候補	50
4.3	MPPC の利点と課題..................................	51
	4.3.1 MPPC 導入によるメリット	52
	4.3.2 ダークカウントレート	52
	4.3.3 低放射線耐性	53
4.4	本研究の目的....................................	53
第5章	MPPC 用信号読み出し ASIC の開発	55
5.1	ASIC の製作	55
	5.1.1 ASIC への要求性能	55
	5.1.2 ASIC の概要	56
5.2	TF01A64 の基本回路構成	59
5.3	SPICE シミュレーションと入力信号の設定...............	62
5.4	各回路の基本性能の見積もり	63
	5.4.1 増幅器	63
	5.4.2 波形整形器	65
	5.4.3 オフセット調整	67
	5.4.4 比較器	67
5.5	雑音解析	69
	5.5.1 電子雑音の種類	69
	5.5.2 雑音のシミュレーション結果	70
5.6	オフセットの検証....................................	73

	5.6.1 オフセットの要因 7	73
	5.6.2 オフセットのシミュレーション結果	74
5.7	ダブルパルスセパレーションの検証 7	76
	5.7.1 パルスセパレーションの概要 7	76
	5.7.2 シミュレーション結果	77
5.8	レジスタ構成 8	31
第6章	TF01A64 用評価ボードの製作 8	34
6.1	ASIC 評価ボードの設計 8	34
6.2	テストパルスを用いた動作確認 8	38
	6.2.1 実験セットアップ 8	38
	6.2.2 実験結果) 0
第7章	まとめと今後) 5
付録 A	TF01A64 Operation Manual	99
付 録 B	T-Spice Analysis 10)9
参考文献	11	18

図目次

1.1	素粒子標準模型...................................	10
1.2	C 変換、P 変換及び CP 変換の概念図..................	11
1.3	ユニタリー三角形	12
1.4	(ho,η) への実験からの制限	13
1.5	<i>B</i> ⁰ – <i>B</i> [¯] 0 混合のボックスダイアグラム	14
1.6	B ファクトリーにおける B 中間子崩壊の例	14
1.7	ツリーダイアグラムとペンギンダイアグラムの例	15
1.8	電子陽電子衝突型加速器とその瞬間ルミノシティの発展	16
2.1	SuperKEKB 加速器の全体図	18
2.2	世界の加速器のエネルギーとルミノシティ	18
2.3	ナノビーム大角度交差衝突方式と KEKB での衝突イメージ	20
2.4	Belle II 測定器の全体図	22
2.5	Belle II 測定器の断面図	23
2.6	VXD の概略図	24
2.7	VXD のセンサー配置の断面図................................	24
2.8	CDC のワイヤー構成図	25
2.9	CDC と SVD におけるシミュレーションによる dE/dx と p の関係	26
2.10	TOP の外観	27
2.11	TOP の粒子識別の概念図	27
2.12	ARICH の外観	27
2.13	ECL 全体の構成図	28
2.14	ビーム衝突点でのソレノイド磁場分布..............................	29
2.15	バレル部 KLM 用シンチレーター	29
2.16	エンドキャップ部 KLM 用シンチレーター	29
2.17	トリガーシステムの概略	30
2.18	Belle II データ収集システムの全体図	31
2.19	$B \rightarrow \tau \nu$ 崩壊	32
2.20	エキゾチックハドロンの発見..................................	33

2.21	KEKB から SuperKEKB のタイムライン 34
2.22	SuperKEKB 加速器の瞬間ルミノシティの値
2.23	SuperKEKB 加速器のルミノシティの見通し
3.1	チェレンコフ光の発生原理....................................
3.2	Belle 測定器における ACC の配置図 38
3.3	ARICH における粒子識別の概念図
3.4	K/π のチェレンコフ角度分布 39
3.5	シミュレーションによる ARICH の K/π 分離能の運動量依存性 40
3.6	ARICH 構成要素の配置 40
3.7	シリカエアロゲル 41
3.8	シングルレイヤーとデュアルレイヤー
3.9	HAPD 42
3.10	HAPD インストールの様子 42
3.11	HAPD の動作原理
3.12	ARICH 読み出しシステムのデータフロー 44
3.13	Front End Board 信号読み出し側とピンコネクタ側の外観
3.14	Front End Board 内部の電子回路の構成 45
3.15	Merger Board の外観 46
3.16	ミラーの役割
4.1	Phase3 初期の ARICH のイベントあたり APD あたりのヒット分布 49
4.2	様々なタイプの MPPC 49
4.3	MPPC の構成 50
4.4	MPPC の典型的な波形 50
4.5	MPPC のフォトカウンティングイメージ 51
4.6	ダークパルス
4.7	APD 内での中性子の振る舞い
5.1	オフセット電圧
5.2	nMOS トランジスタ
5.3	pMOS トランジスタ
5.4	TSMC におけるプロセスノードの歴史 58
5.5	TF01A64 最上位階層 (Topview) 59
5.6	ASIC の基本回路構成 59
5.7	カレントコンベアの回路ブロック 60
5.8	可変抵抗部の回路ブロック
5.9	オフセット調整回路ブロック 61

5.10	比較器 (閾値型) の回路ブロック	62
5.11	比較器の出力選択部の回路ブロック	62
5.12	Low Gain Mode の時に使用する入力信号の波形	63
5.13	High Gain Mode の時に使用する入力信号の波形	64
5.14	増幅率調整後の波形図	64
5.15	可変抵抗部の抵抗値	65
5.16	波形整形器の前と波形整形器の後での波形図	66
5.17	High Gain Mode における増幅器 2 後の波形図	66
5.18	オフセット調整後の波形図	67
5.19	オフセット調整後の波形図	68
5.20	比較器の出力	58
5.21	High Gain Mode における雑音解析	71
5.22	Low Gain Mode における雑音解析	72
5.23	オフセット調整と閾値電圧	73
5.24	プロセス変動とコーナーパラメータ	74
5.25	プロセス変動によるオフセット /	75
5.26	温度変動によるオフセット・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	75
5.27	ダブルパルスセパレーションの概要図	76
5.28	閾値電圧の設定値	77
5.29	Analog Interval の定義	77
5.30	Digital Interval の定義	78
5.31	増幅率 Step 0 のパルスセパレーション結果	79
5.32	増幅率 Step 1 のパルスセパレーション結果	79
5.33	増幅率 Step 2 のパルスセパレーション結果	30
5.34	増幅率 Step 3 のパルスセパレーション結果	30
5.35	レジスタ構成....................................	32
6.1	パッケージ済み TF01A64	34
6.2	TF01A64 用評価ボードの外観	35
6.3	評価ボードへ TF01A64 を取り付けた様子	36
6.4	評価ボード設計の説明図	36
6.5	MPPC 用電源 C11204-01	37
6.6	テストパルスを用いた動作確認のセットアップ	38
6.7	PTS モジュール	39
6.8	増幅器 Step 0 におけるアナログ信号のモニター波形	90
6.9	増幅器 Step 1 におけるアナログ信号のモニター波形	90
6.10	増幅器 Step 2 におけるアナログ信号のモニター波形	90

6.11	増幅器 Step 3 におけるアナログ信号のモニター波形	90
6.12	オフセット調整なしの波形図	91
6.13	オフセット調整 Step 8 におけるアナログ信号のモニター波形 (+10 mV)	91
6.14	オフセット調整 Step 136 におけるアナログ信号のモニター波形 (-10 mV)	91
6.15	オフセット調整 Step 15 におけるアナログ信号のモニター波形 (+20 mV)	92
6.16	オフセット調整 Step 143 におけるアナログ信号のモニター波形 (-20 mV)	92
6.17	Step 63 における閾値電圧	92
6.18	Step 191 における閾値電圧	92
6.19	Step 127 における閾値電圧	93
6.20	Step 255 における閾値電圧	93
6.21	閾値電圧の 10 通りの設定値のグラフ	93
6.22	テストパルスとそのデジタル化後の信号.............................	94

表目次

1.1	↑ 中間子とその質量	13
2.1	<i>e</i> ⁺ <i>e</i> ⁻ 衝突事象での主要な物理過程と反応断面積	19
2.2	KEKB と SuperKEKB のパラメータ比較	19
2.3	Belle II 測定器の構成要素とその適用範囲......................	23
3.1	輻射体とその屈折率...................................	41
3.2	HAPD の仕様	43
4.1	MPPC の仕様	51
5.1	TF01A64 の仕様	58
5.2	High/Low Gain Mode における波高値	65
5.3	High Gain Mode における雑音値と S/N 比.................	71
5.4	Low Gain Mode における雑音値と S/N 比	72
5.5	ダブルパルスセパレーションの限界値.............................	81
5.6	CCR の設定パラメータ	82
5.7	DAC レジスタの設定パラメータ.............................	82
5.8	LCR の設定パラメータ	83
6.1	TF01A64 及びその評価ボード開発のタイムライン	85
6.2	閾値電圧の設定値	94

第1章

序論

かつて、物質や我々の宇宙を構成する最小単位は原子 (Atom) だと考えられていた。しかしなが ら、19 世紀に入ると観測技術や粒子加速器の飛躍的な発展とともに様々な現象や粒子が観測され るようになり、現在は素粒子が最小単位だと考えられている。そして、素粒子の性質やその反応の 法則が標準模型と呼ばれる枠組みにまとめられ、これがこれまで観測してきたあらゆる素粒子実験 の結果をほぼ矛盾なく説明できる基本的な理論となっている。

この章では、素粒子標準模型について、及び本研究のキーワードの一つである B 中間子とその周 辺の物理等について概説する。

1.1 素粒子標準模型と CP 対称性の破れ

1.1.1 標準模型

標準模型とは、現在の素粒子物理学において基本的な枠組みとなっている理論で、これまで観測 してきたあらゆる素粒子実験の結果をほぼ矛盾なく説明する強力な理論である。現在発見されてい る素粒子には、物質を構成する粒子 (フェルミオン) であるクォークとレプトンがそれぞれ 6 種ず つ、力を媒介する粒子であるゲージボソンが 4 種、そしてクォークやレプトン、一部のゲージボソ ンに質量を与えるヒッグス粒子がある。図 1.1 に素粒子標準模型の図を示す。

図に示した通り、物質を構成するクォークやレプトンは電荷によってさらに2種類ずつに分類される。クォークの場合、電荷 +²/₃を持つものはアップタイプ、電荷 -¹/₃を持つものはダウンタイプ に分類される。レプトンの場合は、電荷 -1 のものは荷電レプトン、電荷 0 のものはニュートリノ に分類される。以上の 4 つのどのタイプも 3 つのフェルミオンから構成されており、この 3 種類は 世代と呼ばれ、質量の軽いほうから、第一世代、第二世代、第三世代と並んでいる。

一方で、力は物質を構成する粒子間でゲージ粒子を交換することで生じるとされている。素粒子 が受ける力には、電磁気力、強い力、弱い力、重力の4つがあるが、標準模型には重力を除く3つ の力についてが記述されていて、相互作用(力)を媒介する素粒子としてはそれぞれ光子、グルー オン、W(Z)ボソンが対応している。

図 1.1 素粒子標準模型

ヒッグス粒子は 2013 年に発見された [1] 標準模型最後の粒子で、宇宙初期に起きた相転移の直 接証拠となるものである。宇宙の誕生直後には光速で動き回っていたあらゆる粒子が、この相転移 によってヒッグス場を通過する際に光速より遅くしか運動できなくなり、質量を獲得するように なったと考えられている。

前述のとおり、標準模型はこれまで観測してきたあらゆる素粒子実験結果をほぼ矛盾なく説明で きる優れた理論であることは確かであるが、重力についての記述がない等、この世の物理現象をす べて説明できる万能な理論ではないこともまた事実である。重力について以外にも、階層性の問題 や、ダークマター・ダークエネルギーを説明できないなど、解決できていない問題は数多く存在す る。これらを説明可能な、標準理論を包含する上位の新物理が存在する証拠を実験を通じてつかむ ことが、これからの素粒子物理学の大きな目標となっている。

1.1.2 CP 対称性の破れ

全ての粒子には、反粒子と呼ばれる電気的性質が逆でそれ以外の性質がほとんど同一な粒子が存 在する。宇宙のはじまりであるビッグバン直後の初期宇宙は粒子と反粒子が対生成されたと考えら れており、だとすれば宇宙には粒子と反粒子は同じ数だけあったはずである。しかしながら現在の 宇宙は粒子だけからできており、反粒子でできた反宇宙なるものは存在しない。CP 対称性の破れ は、このような物質優勢の宇宙を説明するための重要な要素の一つである。

ここで、対称性について少し述べておく。物理法則がある変換の元で不変な場合、その変換の対称性は保存していると言い、対して不変でない場合、対称性は破れていると言う。また物理法則には、3 つの基本的な対称性が存在する。それは、空間反転 (P:パリティ変換) と時間反転 (T)、電荷 共役変換 (C) である。空間反転とは、鏡像反転の後、鏡面に垂直な軸に対して 180 度回転するよう な変換である。時間反転とは時間を逆行させるような変換で、電荷共役変換は電荷を入れ替える変換、つまり粒子と反粒子を入れ替える変換を指す。CP 変換は、C と P を同時に行う変換を指す。 C 変換と P 変換、及び CP 変換の概念図を図 1.2 に示す。

図 1.2 C 変換、P 変換及び CP 変換の概念図

さて、CP 対称性の破れは、1964 年に J.W.Cronin、V.L.Fitch らによってストレンジクォーク を含む中性 K 中間子 K_L^0 の崩壊から世界で初めて観測された [2]。これ以前は、弱い相互作用は C 変換や P 変換に対しては対称性が破れていることが知られていたものの、CP 変換 (つまり真に粒 子と反粒子を入れ替える変換) はその対称性は保存すると考えられていた。しかしながら、中性 K 中間子の崩壊 $K_L^0 \rightarrow \pi^+ \pi^-$ の測定に始まり、その後の追認実験や $K_L^0 \rightarrow \pi^0 \pi^0$ 等でも CP 対称性の 破れは観測され、その発見は確実なものとなった。

1.1.3 CKM 行列

CP 対称性の破れを、3 世代のクォークを導入することで説明したのが小林・益川模型における CKM(カビボ・小林・益川) 行列 (式 1.1) であった [3]。CKM 行列は Cabibbo - GIM 機構 [4][5] の、「質量の確定した状態 (質量固有状態) は W ボソンが相互作用する状態 (弱固有状態、フレー バー固有状態) が混合している」というアイデアを拡張した理論で、質量固有状態を弱固有状態に 変換するユニタリー行列である。

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$
(1.1)

3 世代のクォークを導入することで行列内に複素位相を含めることができるようになり、これが CP の破れの起源となる。この CP を破る複素位相のことを CP 位相と呼び、混合角を θ_i (i=1,2,3)、 CP 位相を δ とすると、CKM 行列 (V_{CKM}) は次のように表すことができる。

$$V_{CKM} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & -c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{23}e^{i\delta_{13}} & -s_{22}c_{12} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix}$$
(1.2)

ここで、 $s_{ij} = sin\theta_{ij}$ 、 $c_{ij} = cos\theta_{ij}$ である。さらに、 λ, A, ρ, η をパラメータとして、式 1.2 を $s_{12} = \lambda, s_{23} = A\lambda^2, s_{13}e^{i\delta} = A\lambda^3(\rho + i\eta)$ と置き換えると、

$$V_{CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$
(1.3)

と表される。式 1.3 はウォルフェンシュタイン (Wolfenstein) パラメータ表示 [6] と呼ばれる表記 法で、行列要素の関係がより分かる形式であることが見て取れる。2019 年の最新結果 [7] によれば λ ≈ 0.2248 であり、その平方は 1 より十分小さいことから、CKM 行列の対角成分は近似的に 1 に近い値を取るのに対し、対角成分から離れるほど値は小さくなり 0 に近くなる。これは、クォー ク混合が世代が近いほど強く起こり、遠いほど起こらないことを表している。

また、CKM 行列のユニタリー性から

$$V_{tb}^* V_{td} + V_{ub}^* V_{ud} + V_{cb}^* V_{cd} = 0 aga{1.4}$$

が成り立つはずであり、この関係式は $\rho - \eta$ の複素平面上の三角形 (図 1.3) として表現することが できる。様々な実験により、 ρ, η, ϕ_i を独立に決定することで CKM 行列のユニタリー性を検証す ることができる。

また、図 1.4 はこの検証の現状を示している [7]。

1981 年には、A. Carter や三田らにより、小林・益川模型によると B 中間子で大きな CP 対称 性の破れを観測できる可能性があることが指摘された [8]。このことから、日本の KEK やアメリ カの SLAC それぞれが KEKB と PEP-II という同様の加速器をほぼ同時期に建設し、B ファクト リーと呼ばれる「非対称エネルギー電子・陽電子衝突型加速器実験」が行われることになった。こ れらの実験はそれぞれ Belle 実験、Babar 実験と呼ばれ、2001 年に両実験でほぼ同時に B⁰ と <u>B⁰</u> の崩壊時間分布の差を観測することで、B 中間子における CP 対称性の破れが発見された。

図 1.4 (ρ, η) への実験からの制限

1.2 B の物理と B ファクトリー

B 中間子は、ボトムクォークとそれより軽い反クォークのとの束縛状態およびそれらの反粒子で ある。B 中間子と呼ばれるものにはいくつもの種類があるが、これ以降の議論では $B^0, \bar{B^0}, B^{\pm}$ の 3 つのことを B 中間子と呼ぶことにする。 $b \,$ クォークの弱い相互作用による崩壊は、 $b \rightarrow c, u$ と世代 を越えて起こるため、B 中間子の崩壊を調べることにより、CKM 行列における V_{cb}, V_{ub} などの大 きさを決定することができる。

前節で述べた Belle や Babar 等に代表される B ファクトリー実験では、電子・陽電子の衝突から大量の B 中間子を生成しその崩壊を測定しているが、これは $\Upsilon(4S)$ と呼ばれるボトムニウム共鳴状態が B 中間子対に崩壊する事を利用している。ボトムニウム共鳴状態は多く知られているが、このうち電子・陽電子衝突実験で生成されるものを Υ 中間子と呼んでいる。 $\Upsilon(4S)$ は Υ 中間子のうち 4 番目に軽く、約 48.6% が $B^0\bar{B^0}$ 、約 51.4% が B^+B^- へと崩壊するため、B ファクトリー実験において有用な共鳴状態である。表 1.1 に Υ 中間子についてまとめた表を示す。

共鳴状態	質量 [GeV]
$\Upsilon(1S)$	9.46
$\Upsilon(2S)$	10.02
$\Upsilon(3S)$	10.34
$\Upsilon(4S)$	10.58
$\Upsilon(5S)$	10.88
$\Upsilon(6S)$	11.24

表 1.1 Ŷ 中間子とその質量 [9]

また、中性 B 中間子 B^0 , $\bar{B^0}$ では、図 1.5 に示すように W ボソンを 2 回交換するボックスダイ アグラムにより互いに入れ替わる。これを $B^0 - \bar{B^0}$ 混合 (mixing) と呼ぶ。

図 1.5 $B^0 = \overline{B^0}$ 混合のボックスダイアグラム

CP 対称性の破れの測定

A. Carter や三田らの指摘にもあったように、CP 対称性の破れの測定は B ファクトリー実験に おいて重要な測定対象の一つである。B 中間子の CP 対称性の測定において重要なのは、崩壊した B 中間子が B^0 であったか $\bar{B^0}$ であったかを知る必要があるということである。 $\Upsilon(4S)$ でできた B 中間子対が同時に B^0, B^0 もしくは $\bar{B^0}, \bar{B^0}$ になることはできないため、B ファクトリー実験で はこれを利用して片方の B 中間子の状態 (B^0 もしくは $\bar{B^0}$) 固有の崩壊を観測することでもう片方 の B 中間子の状態を特定する。この方法を「フレーバータギング」と呼ぶ。

図 1.6 B ファクトリーにおける B 中間子崩壊の例

図 1.6 に示したように、例えば片方の B 中間子が $(B^0 \rightarrow) \overline{D^0} \pi^-$ に崩壊した場合、もう片方の B 中間子は $\overline{B^0}$ だと同定できる。それぞれの B 中間子が B^0 、 $\overline{B^0}$ のどちらかの状態であったかを特定し、崩壊時刻を比較することで時間に依存した CP 対称性を調べることができる。

稀崩壊の探索

B 中間子の稀崩壊探索も B ファクトリー実験での重要な測定対象である。B 中間子の崩壊では、 *b* クォークはほとんどの場合 *c* クォークを含む終状態に崩壊してしまい、*b*→*c* の遷移を含まないも のはほとんどの場合 10⁻⁵ 程度もしくはそれ以下の崩壊分岐比しか持たない。このようなものが一 般に稀崩壊と呼ばれている。

弱い相互作用による $b \rightarrow c$ のような通常のクォーク間遷移は「ツリーダイアグラム」(図 1.7:左) と呼ばれ、電荷の変わる Charged Current である。一方で、 $b \rightarrow d$ のような電荷の変わらない崩壊 は「ペンギンダイアグラム」(図 1.7:右) と呼ばれる FCNC(Flavor Changing Neutral Current) 過程にて起こり、ツリーレベルでの崩壊は標準模型で禁止されている。そのため、この過程は最低 でも 1 次のループダイアグラムを通して起こる。

図 1.7 ツリーダイアグラムとペンギンダイアグラムの例

例に示したような、*b→d* 遷移である *B⁰→ρ⁰γ* の崩壊分岐比は 8 × 10⁻⁷ 程度で、非常に小さい。 ペンギンダイアグラムのループには *t* クォークと *W* ボソンが介在し、これらの質量の和は B 中間 子の静止質量の 500 倍近くにもなり非常に重い。したがって、このループ部分に未発見の重い新粒 子が寄与してる可能性は高く、だとすれば崩壊分岐比の標準模型からのずれを測定することで新物 理を見つけることができる。

1.3 Belle 実験から Belle II 実験へ

1.1 節で述べた通り、Belle 実験は B 中間子での CP 対称性の破れを観測し、CKM 行列の有効 性を実証した。この結果により 2008 年には小林誠・益川敏英両氏両博士はノーベル物理学賞を受 賞し、その後 2010 年 6 月 30 日をもって 11 年間にわたる運転を終了した。KEKB 加速器は最終 的にピークルミノシティ (詳しくは 2.1 節で述べる)2.11×10⁻³⁴ cm⁻²s⁻¹(2009 年 6 月) を獲得し、 これは電子・陽電子衝突型加速器としては 2019 年 3 月に SuperKEKB 加速器 (詳しくは次章で述 べる) が更新するまで世界最高の値であった。また、Belle 実験によって取得したデータ量は約 1 ab^{-1} であった。

Belle II 実験は Belle 実験の後継実験として発足し、より高精度な測定を行なうためのアップグ

図 1.8 電子陽電子衝突型加速器とその瞬間ルミノシティの発展 [10]

レードがなされた。ビーム電流を2倍に、ビームサイズを1/20に絞り込むことでピークルミノシ ティを Belle 実験の40倍に増やし、最終的に50 ab⁻¹のデータ取得を目指す。高精度の測定によ り、CP 対称性の破れの精密測定に加え、標準模型を超えるような新物理現象の発見が期待される。

第2章

Belle II 実験

Belle 実験の後継実験として始まった Belle II 実験は、B 中間子や τ レプトンの崩壊を精密に 測定することで、標準模型を超えるような新物理を探索することを目的としている。この章では Belle II 実験で使用される加速器と測定器や現在の運転状況などを中心に概説する。

2.1 SuperKEKB 加速器

2.1.1 概要

SuperKEKB 加速器は電子を7 GeV、陽電子を4 GeV に加速させ、重心系エネルギー \sqrt{s} =10.58 GeV にて衝突させる非対称エネルギー衝突型加速器である。このエネルギーはちょうど、1.2 節で述べた $\Upsilon(4S)$ の質量に一致しており、この状態を媒介すると非常に高い分岐比で B 中間を生成することができる。加速器は、茨城県つくば市の高エネルギー加速器研究機構 (KEK) 内部の直径 1 km、周長 3 km の地下トンネル中に建設されている。電子、陽電子が走るリングはそれぞれ High Energy Ring(HER)、Low Energy Ring(LER) と呼ばれ、またビーム入射用の 1 km の線形加速器 LINAC を持つ。図 2.1 に SuperKEKB の全体図を示す。

ここで、加速器実験に存在する二つのタイプについて説明する。一つ目はエネルギーフロンティ アと呼ばれるタイプである。これは、観測したい物理のエネルギースケールに加速器の重心エネル ギーを合わせ、たとえば粒子を直接生成することを通して、そのエネルギースケールにおける物 理を観測する。標準模型を超える新物理は TeV スケールに存在するとされており、陽子と陽子を 衝突させ最大重心エネルギー 14 TeV を生み出す円形加速器である LHC(Large Hadron Colider) がその代表で、スイスの CERN に建設されている。また次世代加速器として、ILC(International Linear Collider) と呼ばれる電子・陽電子の直線型衝突加速器の建設計画があり、岩手県の北上山 地が候補地として選定されている。重心系エネルギーとしては、250 GeV~1 TeV が予定されて いる。

二つ目は、ルミノシティフロンティアである。重心エネルギーは観測したい物理のエネルギース ケールよりも小さいが、新物理に感度のある事象を大量に生成することで、間接的に高エネルギー

図 2.1 SuperKEKB 加速器の全体図 [11]

スケールに存在する新物理現象を観測することができる。不確定性原理により、低エネルギーの事 象であっても稀に高エネルギー物理の寄与がある事象が存在するため、統計量が多ければ多いほど 新物理への感度は増すこととなる。図 2.2 に、世界の加速器のエネルギーとルミノシティを示す。

図 2.2 世界の加速器のエネルギーとルミノシティ [12]

Belle II 実験はルミノシティフロンティアの実験であり、B 中間子を大量に生成する B ファクト リー実験の一つである。実際には B 中間子の他にも、 τ レプトンや c クォークなども大量に生成さ れており、このことは Belle II におけるフレーバー物理の多様な研究を実現している。 $\sqrt{s} = 10.58$ GeV/ c^2 における e^+e^- 衝突事象での主要な物理過程と反応断面積を表 2.1 に示す。

また、電子と陽電子のエネルギーが非対称な理由であるが、これは CP 対称性の測定の為である。 $B^0 \ge \overline{B^0}$ の CP 対称性の測定の為には崩壊時間の差を測定することが必要であるが、実験的には $B^0 \ge \overline{B^0}$ の崩壊位置の距離の差を測定する事に対応する。しかしながら、 B^0 の平均寿命は

物理過程	生成断面積 [nb]
$e^+e^- ightarrow \Upsilon(4S)$	1.110
$e^+e^- ightarrow u \bar{u}$	1.61
$e^+e^- ightarrow d\bar{d}$	0.40
$e^+e^- \rightarrow s\bar{s}$	0.38
$e^+e^- \rightarrow c\bar{c}$	1.30
$e^+e^-\!\to\mu^+\mu^-$	1.148
$e^+e^-\!\!\to\tau^+\tau^-$	0.919

表 2.1 e⁺e⁻ 衝突事象での主要な物理過程と反応断面積 [9]

約 1.5 ps と短く、もし静止状態で生成されれば測定器で観測可能な距離の差を確保することがで きない。一方、非対称エネルギーであれば衝突でできる B 中間子はブーストされ、相対論的効果で 寿命が延び、検出可能な距離の差を確保できる。

2.1.2 性能

SuperKEKB 加速器は、Belle 実験で用いた KEKB 加速器から衝突点におけるビームサイズを 1/20 に、蓄積ビーム電流を 2 倍に高めることで衝突頻度を 40 倍に増やした加速器である。表 2.2 に KEKB 加速器 [13] と SuperKEKB 加速器 [14] の各パラメータの比較を示す。なお、KEKB の パラメータは最終的に到達した値、SuperKEKB については設計値である。

パラメータ	KEKB 加速器	SuperKEKB 加速器
ビームエネルギー [GeV/c](LER/HER)	3.5/8.0	4.0/7.0
ビーム電流 $I_{\pm}[A](\text{LER/HER})$	1.64/1.19	3.6/2.6
交差角度 [mrad]	22	83
$\xi_{y\pm}(\text{LER/HER})$	0.129/0.0881	0.090/0.0807
$\beta_{y\pm}^*$ [mm](LER/HER)	5.9/5.9	0.27/0.30
バンチ数	1584	2500
ルミノシティ $\mathcal{L}[10^{34} \mathrm{cm}^2 \mathrm{s}^-1]$	2.11	80

表 2.2 KEKB と SuperKEKB のパラメータ比較

 $\xi_{y\pm}$ はビームビームパラメータと呼ばれる量で、衝突点でビーム同士が互いに及ぼし合う力の大きさを示す無次元量である。また、 $\beta_{y\pm}^*$ は y 方向衝突点の β 関数で、ビームサイズを決める絞り込みの大きさに対応する量である。添え字の ± は電子と陽電子を表している。

ルミノシティ L は、ビーム衝突型加速器において単位面積単位時間当たりの衝突頻度を示す量

であり、加速器のパラメーター用いると、以下の式のように表すことができる。

$$\mathcal{L} \simeq \frac{\gamma_{\pm}}{2qr_e} \left(\frac{I_{\pm} \xi_{y\pm}}{\beta_{y\pm}^*} \right) \tag{2.1}$$

 γ はローレンツ因子、q は素電荷、 r_e は古典半径である。この式から分かる通り、ルミノシティ $\mathcal L$ は $\xi_{y\pm}$ が一定であれば、 I_\pm に比例し、 $\beta_{y\pm}^*$ に反比例して大きくすることができる。

KEKB からのアップグレードとして、当初 SuperKEKB ではビーム電流を大幅に上げることで ルミノシティを稼ぐ予定であったが、コスト等の問題により 2 倍程度上げるにとどまった。よっ て、ルミノシティを大幅に上げるには、ビームサイズを絞ることで $\beta_{y\pm}^*$ の値を十分小さくする必 要があった。しかしながら、ビームサイズを極端に絞る副作用として、衝突部分の両側で砂時計の ようにビームが膨らむ現象 (Hourglass 効果) が問題になる。この影響を減らすため、SuperKEKB では世界で初めてナノビーム大角度交差衝突方式 (図 2.3)を採用した。進行方向 5 mm~6 mm、 水平方向 10 μ m、垂直方向 50 nm~60 nm の電子と陽電子のバンチ同士を約 5 度の大きな交差角 で衝突させることで、ビームの重なり部分を短くし、ビームを非常に細く絞った。また参考とし て、KEKB 加速器での衝突のイメージも図 2.3 に示した。

図 2.3 ナノビーム大角度交差衝突方式 (左)と KEKB での衝突イメージ (右)

このように、ビーム衝突実験ではビームの重なった部分が実質的なバンチ長となる。ナノビーム 大角度交差衝突方式では、ビームを絞ることで中心点で高いルミノシティを確保し、ビームが広が る周辺部は衝突を起こさないようになっている。

2.2 ビームバックグラウンド

電子・陽電子ビームの軌道を外れた粒子が電磁シャワーや中性子を生じ、各検出器へ入射する。 これをビームバックグラウンドと呼ぶ。ビームバックグラウンドは、信号事象の再構成性能の低下 や、放射線損傷による検出器の劣化の原因となる。SuperKEKB で想定されるビームバックグラウ ンドには以下のようなものがある [15]。

2.2.1 ビーム由来

(1) タウシェック散乱

同一バンチ内の e[±] 同士が衝突し、運動量が増加または減少する。軌道を外れた粒子が、衝突点 付近でビームパイプに当たってシャワーを生成することでバックグラウンドとなる。散乱確率は ビームサイズやビームエネルギーに反比例するため、ビームサイズを大幅に絞った SuperKEKB にとって、タウシェック散乱によるバックグラウンドは激増する。特に LER にとっては深刻で、 この対策のためビームエネルギーは KEKB より 0.5 GeV 高い 4 GeV となった。

(2) ビームガス散乱

ビームパイプ内の残留ガスにビーム粒子が衝突し、クーロン散乱により角度が変わったり、制動 放射により光子を放出してエネルギーが減少する。散乱確率はビーム電流と真空度に比例するた め、KEKB と同程度の真空度を達成できればそれほど深刻なバックグラウンドになりえない。

(3) シンクロトロン放射

ビームが磁場によって曲げられる際に放射光を出す。衝突点手前の最終収束電磁石で発生した放射光が,内層の SVD や PXD に当たるとバックグラウンドとなる。

(4) 後方散乱

衝突点を通り過ぎたビームが反対側の最終収束電磁石で曲げられる際に発生する放射が,散乱さ れて衝突点側に戻ってくるとバックグラウンドとなる。KEKB では最終収束電磁石が両リングで 共有だったため,反対側の最終収束電磁石の中心から離れた所を通過して大きく曲げられ強い放射 光が出ていたが、SuperKEKB では各リングが専用の最終収束電磁石を持っているので,この寄与 は少なくなっている。

(5) ビーム・ビーム相互作用

ビームの衝突の際に、相手側のビームから受ける電磁力によって散乱されることで、バックグラ ウンドの増加につながる。

2.2.2 衝突事象由来

電子・陽電子衝突に由来するバックグラウンドで、ルミノシティに比例して大きくなる。

(1) Radiative Bhabha 散乱

$$e^+e^- \rightarrow e^+e^-\gamma$$

衝突点で電子と陽電子が Radiative Bhabha 散乱すると、ビーム軸方向に光子が出る。この光子 がずっと下流の偏極電磁石の鉄に当たって巨大双極子共鳴反応によって中性子が発生し、検出器 付近まで戻って来たものがバックグラウンドとなる。後述の ARICH 検出器において、Radiative Bhabha 散乱は光検出器の性能悪化の一番の原因だと考えられる。

(2) 2 光子過程

$e^+e^- \rightarrow e^+e^-e^+e^-$

ビームの電子・陽電子が放出する2光子の衝突により生成した電子・陽電子対が主に PXD の バックグラウンドとなる。運動量がとても低くなるため、ソレノイド磁場に巻きついて、1/r² に比 例するバックグラウンド分布となる。

2.3 Belle II 測定器

Belle II 測定器 (図 2.4) は、役割によって最適な動作原理の装置を組合わせた複合型検出器であ る。SuperKEKB 加速器からの電子・陽電子ビームの衝突点を囲むように設置され、B 中間子の崩 壊により生成された安定粒子 (電子、μ 粒子、光子、π 粒子、K 粒子、陽子など)の運動量、エネル ギー等を正確に測定することで粒子識別を行っている。

図 2.4 Belle II 測定器の全体図 [16]

図に示すように、内側から崩壊点検出器 Pixel Detector(PXD) 及び Sillicon Vertex Detector(SVD)、中央飛跡検出器 Central Drift Chamber(CDC)、粒子識別・飛行時間測定装置 Time-of-Propagation counter(TOP)、荷電粒子識別装置 Aerogel Ring-Imaging Cherenkov counter(ARICH)、電磁カロリメータ Electromagnetic Calorimeter(ECL)、長寿命粒子識別装置 K_L and Muon detector(KLM) が配置されている。図 2.5 に Belle II 測定器の断面図を、表 2.3 に Belle II 測定器の構成要素とその適用範囲をまとめた表を示す。

また Belle II 測定器は大きく 2 つの領域に分けることができ、Belle II 測定器を円柱と見立てた

図 2.5 Belle II 測定器の断面図 [17]

表 2.3	Belle II 測定器の構成要素とその適用範囲

検出器	用途	適応範囲 θ
PXD	崩壞点検出	[17°; 150°]
SVD	崩壞点検出	$[17^\circ; 150^\circ]$
CDC	飛跡検出	$[17^\circ; 150^\circ]$
TOP	粒子識別	$[31^\circ; 128^\circ]$
ARICH	粒子識別	$[15^{\circ}; 34^{\circ}]$
ECL	カロリメータ—	$[12.4^{\circ}; 31.4^{\circ}]$ (バレル)
		[32.2°; 128.7°](前方エンドキャップ)
		[130.7°;155.1°](後方エンドキャップ)
KLM	μ 粒子検出	$[40^{\circ}; 129^{\circ}]$ (バレル)
		[25°;40°](前方エンドキャップ)
		[129°;155°](後方エンドキャップ)

場合、側面にあたる領域をバレル部、底面にあたる領域をエンドキャップ部と呼んでいる。さらに エンドキャップ部は陽電子の入射側を前方エンドキャップ、電子の入射側を後方エンドキャップと 呼んで区別している。

この節では、以上の Belle II 測定器を構成する 7 つの検出器と、データ収集のための DAQ とト リガーシステムについて概説する [17][18]。

2.3.1 VXD (PXD, SVD)

VerteX Detector(SVD)(図 2.6) は、B 中間子の崩壊点を測定することを目的とした半導体検出 器で、Belle II 測定器の最も内側にある。B 中間子の崩壊点位置の精密測定は、 $B^0 \bar{B^0}$ の崩壊時間 差 Δt の決定に非常に重要である。図 2.7 に示すように、VXD は 2 層の PXD と 4 層の SVD か ら構成され、荷電粒子がシリコン板を通過するときに作られる電子・正孔対を読み出すことで、荷 電粒子の通過位置の 2 次元情報を測定する。また、この通過位置情報と、後述の CDC を用いて粒 子の飛跡を測定している。

図 2.6 VXD の概略図 [17]

PXD

PXD は VXD の 1 層目と 2 層目の検出器で、半径方向 14mm と 22mm の場所に設置されてい る。PXD は DEPFET(DEPleted Field Effect Transistor) と呼ばれるピクセル化されたシリコン 検出器で構成されており、空乏層で生じた電子の電荷量にに比例した電流が流れ、専用線から読み 出される。

Belle II 実験では Belle 実験に比べ高いバックグラウンドが予想されたが、B ファクトリー程度 の低いエネルギーの実験では多重散乱が非常に多くなるため、従来のものよりも非常に薄い厚さ 75µm のピクセル検出器が SVD の内側に設置された。PXD の導入により、様々なハドロンの崩 壊点を約 50µm の精度で検出することや、比較的命が長い K_s 中間子や Λ バリオンの再構成効率 の向上が可能となった。

SVD

SVD は VXD の 3~6 層目の検出器で、半径方向 39 mm、80 mm、104 mm、135 mm の場所 に設置されている。SVD には DSSD(Double Sided Sillicon Detector) と呼ばれる半導体検出器 が使用されていて、これは Belle 実験にも用いられていた。DSSD はシリコンセンサーを直交する ように 2 枚張り合わせた検出器で、一方には n 型半導体ストリップが、もう一方には p 型半導体 ストリップが刻まれている。これを複数層使用することで 3 次元的に位置測定ができるようになっ ている。

また、SVD では崩壊点を測定することと同時に、エネルギー損失 *dE/dx* を用いた低運動量領域 での粒子識別も行っている。

2.3.2 CDC

CDC は VXD 外層に設置されたドリフトチェンバーであり、粒子の飛跡や運動量測定、飛跡情報による level 1 トリガー生成、SVD と同様に *dE/dx* 測定による低運動量領域での粒子識別など、さまざまな役割を担っている。ワイヤーには、信号を観測するためのセンスワイヤーと電場を生成するためのフィールドワイヤーがあり、それぞれ 14336 本と 42240 本張られている。ワイヤー構成図を図 2.8 に示す。また、装置内部はヘリウムとエタンが 1:1 で混合したガスで満たされている。

図 2.8 CDC のワイヤー構成図 [17]

CDC に荷電粒子が通過するとガスが電離し、強い電場により電子雪崩を起こしながらセンスワ イヤーヘドリフトする。このドリフト時間や粒子の飛跡からセンスワイヤーまでの距離を求めるこ とができ、複数のヒット点でこれを行い飛跡の再構成をすることで、粒子の通過位置と運動量を求 めることが可能である。

ここでエネルギー損失を用いた粒子識別について概説する。SVD や CDC を通過した際に損失 した荷電粒子のエネルギー損失 dE/dx は粒子のローレンツ因子 $\beta\gamma$ に依存する。特殊相対性理論 から導かれる関係式 $\beta\gamma = p/m$ を用いて、飛跡情報から求めた運動量 $p \ge dE/dx$ から求めた $\beta\gamma$ によって粒子の質量 m がわかる。図 2.9 に示すように、特に p < 1.5 GeV/ c^2 の領域において粒子 識別が可能である。

図 2.9 CDC(左) と SVD(右) におけるシミュレーションによる dE/dx と pの関係 [9]

2.3.3 TOP

TOP は Belle II 測定器のバレル部で主に荷電 K 中間子と荷電 π 中間子の識別を担う検出器で、 外層側を ECL に、内装側を CDC に挟まれている。検出器の外観を図 2.10 に示す。

TOP は 2 枚の合成石英板と、光検出器 Micro-Channel-Plate(MCP)-PMT*¹で構成されてい る。この石英板が輻射体かつ伝搬体として働いており、発生したチェレンコフ光を石英内部で反射 させ、片側端面に設置された光検出器で検出する。そして、光検出器で検出したチェレンコフ光の 位置と時間から、リングイメージを再構成することで粒子識別を行うことが可能である。TOP は リングイメージを伝搬時間と検出位置の 2 次元平面に投影することで、非常にコンパクトなサイズ とシンプルな構造を実現した。図 2.11 に粒子識別の概念図を示す。

2.3.4 ARICH

ARICH(図 2.12) は Belle II 測定器のエンドキャップ部で、主に荷電 K 中間子と荷電 π 中間子 の識別を担う検出器である。TOP と同様チェレンコフ光を用いた粒子識別装置で、輻射体である シリカエアロゲルと光検出器である Hybrid Avalanche Photo Detector(HAPD) から構成される。

^{*&}lt;sup>1</sup> Photomultiplier の略。光電子増倍管。

図 2.11 TOP の粒子識別の概念図 [18]

詳細は3章で述べる。

図 2.12 ARICH の外観

2.3.5 ECL

ECL はバレル部とエンドキャップ部において光子や電子のエネルギーを測定する電磁カロリ メータである。この検出器は主にシンチレーター (CsI(TI)) と光検出器で構成されており、バレル 部に 6624 個、フォワード部に 1152 個、バックワード部に 960 個使用されている。図 2.13 に ECL 全体の構成図を示す。

ECL は、光子や電子がシンチレーターに入射した際に発生する電磁シャワーの光量がエネル

図 2.13 ECL 全体の構成図 [17]

ギーに比例することを利用し、エネルギー測定を行う。 $\pi^0 \to \gamma\gamma$ に代表されるような典型的な γ のエネルギーである数十〜数百 MeV から、 $B^0 \to \pi^0 \pi^0$ などの二体崩壊由来の π^0 のエネルギーである 4GeV を超えるエネルギーまで幅広く対応できる。

ECL の情報はトリガーに使用されたり、シャワーの形状とエネルギーと運動量の比 (*E*/*p*) を用 いた電子/ハドロン識別も行っている。

2.3.6 超伝導ソレノイド電磁石

ECL の外側には、内径 1.7 m、外径 2.00 m、長さ 4.41 m のソレノイド型電磁石が設置されて いて、1.5 T の強磁場を測定器の内部に作っている。CDC 内の荷電粒子はこの磁場によってロー レンツ力を受けてその軌道を曲げられ、その曲率から運動量を測定することができる。コイルはニ オブ・チタン合金で作られ、液体ヘリウムで-268 ℃まで冷却して超伝導状態にする。超伝導状態で 3mm×3mm の断面積の電線に 4160 A という大電流を流すことにより、1.5 T の磁場を生成して いる。

この磁場は交差角を持つビームの衝突性能を著しく劣化させるため、ビームライン上のソレノイ ド磁場は積分値としてゼロとなるようにしている。図 2.14 にビーム衝突点でのソレノイド磁場分 布の図を示す。

図 2.14 ビーム衝突点でのソレノイド磁場分布 [19]

2.3.7 KLM

KLM は Belle II 測定器の最外層に位置し、透過力の高い µ 粒子の同定と、中性で寿命が長いた めに検出器内で反応を起こさない K⁰_L 中間子を検出している。この装置は薄い鉄板と荷電粒子を検 出できる検出層を交互に重ねたサンドウィッチ構造となっており、物質との相互作用の仕方から粒 子の通過を検出できるようになり、軌跡を再構成できる。また、構造体はバレル部とエンドキャッ プ部からなっており、中央にあるバレル部を前後2つのエンドキャプ部で蓋をして、超伝導ソレノ イドが作る磁力を鉄の構造体内を通すことにより外部に磁場が漏れないようにしている。

検出器にはプラスチックシンチレーターが用いられている。プラスチックシンチレーター内に波 長変換ファイバーを通し、その先に光検出器 MPPC を付けこれを並べる。また、これらと直交す る方向にも重ねることで2次元情報が得られるようになる。プラスチックシンチレーターは、バレ ル部とエンドキャップ部で違うものが採用されているが、波長変換ファイバーと光検出器 MPPC に関しては同様のものが使われている。

図 2.15 バレル部 KLM 用シンチレーター [20] 図 2.16 エンドキャップ部 KLM 用シンチレーター [20]

2.3.8 トリガーシステムと DAQ

Belle II 実験では Belle 実験の 40 倍以上の高いルミノシティでデータ収集が行われるため、検 出器は占有率増加を抑えるために検出要素を高精細化した設計がなされている。検出器からのデー タ量はイベントあたり総計で 1 MB を越え、トリガーレートも最大で 30 kHz と見積もられてい る。よって、データ収集システム内のリアルタイム処理でどこまでデータ量を削減出来るかが重要 である。

まずはトリガー信号である。図 2.17 に Belle II トリガーシステムの概略を示す。サブトリガー は CDC、ECL、TOP、KLM の 4 つで、すべて独立かつ並列に動作する。物理事象に対するトリ ガー判定はおもに CDC と ECL のサブトリガーを用いられ、TOP サブトリガーは事象の発生時 間をより精密に求めるために使われる。それから、KLM サブトリガーは μ 粒子同定により、CDC と ECL のサブトリガーと組み合わせて使用する。

図 2.17 トリガーシステムの概略 [21]

これらのトリガー信号は、SuperKEKB 加速器の高周波信号から作られたクロックに同期され、 各検出器のフロントエンド電子回路に分配される。この各検出器それぞれのフロントエンド回路で データはすべてデジタル化されている。デジタル化された信号は共通の Belle2link と呼ばれる高 速光データ転送システムを用いて共通読み出しモジュール COPPER に送られる。さらに、200 枚 を越える COPPER から送られたデータは 40 台の Readout PC に集められ、部分的にイベント形 成が行われる。Readout PC で前処理されたデータは 2 段のネットワークスイッチを通して全て のイベント形成を行い、最終的に 10 GbE ネットワークで高次トリガー (HLT) に送られる。HLT はオフラインとまったく同じ全イベント再構成がイベント毎の並列処理で行われ、その結果を用い て物理イベントの選択を行う。

しかしながら、PXD だけはそのデータ量は他の検出器と比較して圧倒的に大きく、COPPER を使用して読み出すことが難しい。そこで ONSEN(Online Select Node) と呼ばれる特別な読み 出しシステムを用い、HLT で再構成された粒子の飛跡を PXD センサーの表面まで外挿して信号 が発生するピクセルを予測し,その部分だけけのデータを後段に送ることでデータ量の削減を図っ ている。このデータは HLT での処理の後に他の検出器のデータと結合される。

図 2.18 に Belle II データ収集システムの全体図を示す。

図 2.18 Belle II データ収集システムの全体図 [22]

2.4 Belle II で期待される新物理

Belle II 実験ではアップグレードした加速器である SuperKEKB により、KEKB と比べて 40 倍のルミノシティを実現し、Belle 実験の 50 倍のデータを収集することで、新物理の探索を行う。 Belle 実験をはじめとしたこれまでの B ファクトリー実験の測定結果の中にも新物理の手がかり がいくつかあったものの、ほとんどの測定は統計精度がリミットしていたが、Belle II 実験では数 パーセントでの高精度測定が可能である。以下に、Belle II 実験で期待される新物理現象について まとめた。

荷電ヒッグス

標準理論を超える新物理の多くは複数のヒッグス粒子を予言しており、例えば超対称性理論 [23] では標準理論が予言するヒッグス粒子以外に、別の中性のヒッグス粒子と電荷を持った荷電ヒッグ ス粒子 H[±] が存在すると考えられている。

ここで注目されるのが、B 中間子の稀な崩壊事象の $B \rightarrow \tau \nu$ (図 2.19) である。この崩壊は標準

模型では荷電ウィークボソン W[±] の交換で起こるが、もし荷電ヒッグスが存在すれば崩壊分岐比 が標準理論の値から大きくずれる。このずれを測定することができれば、新物理の証拠となる。ま た、同様の探索は *B→Dτν* 崩壊でも可能である。

τ のLFV(Lepton Flavor Violation) 事象

LFV とはレプトンフレーバー数 (各世代のレプトン数) が保存しないような崩壊を指し、未だに 荷電レプトンの過程においてその破れは見つかっていない。Belle II では、B 中間子と共に大量に 生成される τ レプトンを用いて、 τ が μ に遷移する崩壊を見つけようとしている。LFV は標準模 型で禁止されているため、発見されれば即座に新物理となる。このようなレプトンフレーバー非保 存をもたらす模型としては、超対称性、レプトクォーク^{*2}等がある。

右巻き相互作用

標準理論において、弱い相互作用は左巻きのフェルミオンと右巻きの反フェルミオンにしか作用 しない。その結果、B 中間子の崩壊のうち $B \rightarrow X_{d\gamma}(X_d \operatorname{id} d \, \rho_{\pi} - \rho \, e \, e \, d \, v \, r \, n \, v)$ などの輻射 崩壊では光子もほぼ左巻きであり、右巻き光子の輻射は CP 非対称度およそ 0.02 で強く抑制され る。しかしながら、右巻きの相互作用が新物理として存在していれば、 $B^0(\bar{b}d) \rightarrow \bar{B}^0(b\bar{d}) \rightarrow X_{d\gamma_R}$ と $B^0(\bar{b}d) \rightarrow X_{d\gamma_R}$ の振幅の量子力学的干渉効果は大きくなり、より高い CP 対称度として現れる ことが期待できる。SUSY のモデルでは 10% の CP 非対称度を予言している。

エキゾチックハドロン

通常、ハドロンは3つのクォークから構成されるバリオンと、1つのクォークと1つの反クォー クからなるメソン (中間子)の2種類に分類される。しかしながら近年、チャームやボトムクォー クといった重いクォークを含む系で通常の中間子やバリオンとして説明できないハドロンの候補が 見つかっている。これらはエキゾチックハドロンと呼ばれ、例えば4つのクォークから成るテトラ クォーク、5つのクォークから成るペンタクォークなどがある。

^{*2} クォークとレプトンの対にカップルするとされる架空 (今だ未発見)の粒子

エキゾチックハドロンは、Belle 実験で世界で初めて発見され (*X*(3872))[24]、データ量を増す につれ続々と見つかった (図 2.20)。Belle II 実験では Belle 実験よりも多くデータ量が得られるこ とから、より多くのエキゾチックハドロンが見つかる可能性がある。これらを探索することは、エ キゾチックハドロンの候補の内部構造を解明するだけでなく、ハドロン内部のクォーク束縛に関す る新たな知見につながる。

図 2.20 エキゾチックハドロンの発見 [25]

2.5 Belle II 実験のシフト体制とコミッショニング

2.5.1 シフト体制

Belle II 実験の運転のためのシフトには大きく2つ、実験シフトとBCG(Belle II Commissioning Group) シフトがある。実験シフトは2人1組で、筑波実験棟地下3階のBelle II 制御室でデータ 収集に関する仕事を行う。具体的には、各検出器のDAQやHVなどの監視を行い、必要に応じて 各検出器の担当者であるエキスパートシフトに連絡する。BCGシフトは加速器コントロール棟盛 業室で、加速器側とのリエゾン的な役割を担っている。これらが、昼シフト、準夜シフト、深夜シ フトの1日3交代制でBelle II コラボレーターによって行われている。

2.5.2 コミッショニングと今後の見通し

Belle II 実験は現在本格運転が始まっているが、実験開始からこの本格運転の段階に入るまでに いくつかの段階を踏みながら計画的に実験が進められた。図 2.21 に KEKB から SuperKEKB ま での年表を示す。以下ではこの段階 (Phase と呼ぶ) について述べる。

Phase1(2016 年 2 月~2016 年 6 月) は Belle II 測定器は衝突点の外で建設中であり、代わり

図 2.21 KEKB から SuperKEKB のタイムライン [26]

に BEAST2 と呼ばれるコミッショニング用の測定器が設置された。また、最終収束マグネット (QCS) も設置されていなかった。この時点ではビームは衝突させず、SuperKEKB 加速器のハー ドウェア・ソフトウェアの性能確認や BEAST2 によるビームバックグラウンド測定などが行わ れた。

Phase2(2018 年 2 月~2018 年 7 月) に入ると、SVD と PXD を除くすべての検出器がインス トールされた。2018 年 4 月 26 日には初のビーム衝突が確認され、その後のビーム衝突で物理デー タとキャリブレーション用のデータを取得した。また、SVD および PXD を設置しても問題ない バックグラウンドレベルであるかどうかや、ナノビーム大角度交差衝突方式という新しい方法でル ミノシティはきちんと出るのかどうかなどが確認された。Phase2 期間で取得できた積分ルミノシ ティは 0.5 fb⁻¹ であった。

Phase3(2019 年 3 月~) は全検出器がインストールされた完全な Belle II 測定器にて実験が進め られている。2020 年 6 月 15 日には瞬間ルミノシティ 2.22×10³⁴ cm⁻²s⁻¹ を達成し (図 2.22)、世 界最高記録を更新した。

図 2.22 SuperKEKB 加速器の瞬間ルミノシティの値 [27]

今後も徐々にピークルミノシティを上げながら、想定されている運転期間である 10 年間をかけ
て目標である 50 ab⁻¹ のデータ量を蓄積する予定である。図 2.23 に Belle II 実験で取得するにル ミノシティの見通し図を示す。

図 2.23 SuperKEKB 加速器のルミノシティの見通し [28]

第3章

ARICH 検出器

ARICH 検出器 (Aerogel Ring-Imaging Cherenkov counter) は Belle II エンドキャップ部で荷 電 K 中間子及び荷電 π 中間子の識別を行う検出器である。荷電粒子が輻射体を通過することで発 生するチェレンコフ光を光検出器によって 2 次元のリングイメージとして検出し、その情報から放 射角を導出することで粒子識別を行う。

Belle II 実験のようなフレーバー物理の実験では、荷電粒子の識別、特に K と π の識別はフレー バータギングや稀崩壊の測定に非常に重要である。この章では、ARICH の動作・検出原理と構成 要素等について述べる。

3.1 ARICH 検出器の原理

3.1.1 チェレンコフ光の発生原理

荷電粒子がある媒質中を通過する際、その速度が媒質中での光の伝搬速度を超えることがある。 この時、媒質との相互作用により生じた電磁波は互いに干渉・増幅することで光の衝撃波のように 放射される。この光をチェレンコフ光と呼び、粒子の速度に依存する放射角を持った円錐状に光子 が放出される (図 3.1)。チェレンコフ光は水や空気などでも発生するため、Super-Kamiokande な どの超大型検出器でも使用される [29]。

図 3.1 に示したように、屈折率を n、荷電粒子の速度を β 、光速を c とすると、チェレンコフ光 の放射角 θ_c は以下の式で表される。

$$\cos\theta_c = \frac{\frac{c}{n}\Delta t}{\beta c\Delta t} = \frac{1}{n\beta} \tag{3.1}$$

また、発生する光子数 N は次式で表される。

$$\frac{dN^2}{dxd\lambda} = \frac{2\pi\alpha z^2}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2(\lambda)}\right)$$
(3.2)

図 3.1 チェレンコフ光の発生原理

ここで x は媒質の厚み、 λ は波長、 α は微細構造定数 (1/137)、z は荷電粒子の電荷 (通常 1^{*1}) である。この式からわかるように、一般に速度や屈折率が大きいほどチェレンコフ光子数 N は増加する。

3.1.2 粒子識別原理

前項で説明したチェレンコフ光を観測し、その放射角から粒子の種類を識別するというのはチェ レンコフ光を用いた検出器の基本原理であるが、これには閾値型とリングイメージ型 (RICH) と大 きく 2 つの種類がある。

閾値型は荷電粒子の通過時にチェレンコフ光が発生したかどうかで粒子識別を行う方法である。 チェレンコフ光の有無は荷電粒子の速度がある閾値以上であるかを判定することに対応するため、 他検出器で得られた運動量情報と組み合わせて識別するのが基本的な原理である。Belle II 実験の 前身実験である Belle 実験では、この閾値型の検出器である ACC(Aerogel Cherenkov Counter) が採用されていた。ACC はバレル部では 1.5~3.5 GeV を、前方エンドキャップ部では 0.5~2.5 GeV の運動量領域を担当し、K と π の識別を行っていた。図 3.2 に Belle 測定器における ACC の配置図を示す。

リングイメージ型はリング状に発生したチェレンコフ光を光検出器で測定し、そのリング半径差 から粒子識別を行う方法である。本章で説明している ARICH 検出器は、このリングイメージ型に 当たる。ARICH は輻射体シリカエアロゲルを通過する際に放射するチェレンコフ光を、20 cm 程 離れたところにある後段の光検出器 HAPD(Hybrid Avalanche Photo Detector) にて 2 次元のリ ングイメージとして検出する。その後リング半径から導出した放射角から、式 3.3 を用いて粒子の 種類を同定する。

^{*1} 電子電荷を単位とした絶対値

図 3.2 Belle 測定器における ACC の配置図 [30]

$$m = p\sqrt{n^2 \cos^2\theta_c - 1} \tag{3.3}$$

ここで、*m* と *p* はそれぞれ粒子の質量と運動量、*n* はエアロゲルの屈折率、 θ_c はチェレンコフ 放射角である。図 3.3 に ARICH における粒子識別の概念図を示す。

図 3.3 ARICH における粒子識別の概念図

通常のリングイメージ型の検出器は θ_c の測定を容易にするために、輻射体から光検出器までの 距離を出来るだけ長くとることが多い。しかしながら ARICH では、Belle の ACC があった場所 にインストールしなければならなく、奥行き 30 cm という狭い空間に制約されたため、20 cm 程 度の近接型 RICH が選択された。

また、運動量 p = 3.5 GeV/c、屈折率 n = 1.05 を仮定すると、チェレンコフ放射角は荷電 K 中間子で 277 mrad、荷電 π 中間子で 307 mrad であり、HAPD 面におけるリング半径にすると荷 電 K 中間子が 48 mm、荷電 π 中間子が 54 mm であるため 6 mm のリング半径差に相当する。図 3.4 に屈折率 n = 1.05 における K/π 中間子のチェレンコフ角度分布の図を示す。

検出器の荷電粒子あたりの角度分解能 $\Delta \theta$ は、荷電粒子あたりの検出光子数 N_{pe} と 1 光子あたり

図 3.4 K/π のチェレンコフ角度分布

の角度分解能 Δθ_c を用いて式 3.4 のように表されるので、これが角度差 30 mrad と比べてどの程 度小さくできるかが検出器の粒子識別性能を決める。

$$\Delta \theta = \frac{\Delta \theta_c}{\sqrt{N_{pe}}} \tag{3.4}$$

3.2 ARICH 検出器への要求性能

ARICH は Belle の ACC にかわる新検出器として、より広い運動量領域に対応できるように開発された。通常、エンドキャップ部に飛来する K/π 中間子は低運動量のものが多いが、新物理探索のための $B \rightarrow KK, \pi\pi, K\pi$ などの 2 体崩壊からの K/π 中間子は最大で 3.5 GeV/c 程度の運動量を持つ。したがって ARICH 検出器では 0.5~3.5 GeV/c の運動量を持つ荷電粒子を識別し、特に K/π 中間子の識別に対して 4 σ 以上の分離能を持つことが要求される。図 3.5 にシミュレーションによる ARICH の K/π 分離能の運動量依存性の図を示す。

3.3 ARICH 検出器の構造と構成要素

ARICH 検出器は外径 1.1 m、内径 0.4 m のドーナツ型で厚さ 40 mm の輻射体シリカエアロゲ ルと厚さ 30 mm の光検出器 HAPD の 2 層から構成され、両者は 160 mm 離れて配置されてい る。光検出器の後ろには厚さ 50 mm の読み出しのための電子回路が設置されている。図 3.6 に ARICH 構成要素の配置図を示す。

図 3.5 シミュレーションによる ARICH の K/π 分離能の運動量依存性

3.3.1 輻射体シリカエアロゲル

ARICH における輻射体にはシリカエアロゲル (図 3.7) が用いられている [31]。シリカエアロ ゲルは SiO₂(二酸化ケイ素) の骨格が 3 次元的に組み合わさった多孔固体物質で、触ると発泡スチ ロールのような感触がある。体積の 90% 以上を空気が占め、骨格径も 10 nm 程度のため、シリカ エアロゲルは低密度で高い透過長を持つ。また空気の占有率を変えることで、屈折率を 1.007~1.2 の範囲で実現できる。表 3.1 に代表的な輻射体の屈折率をまとめた。

3.2 式に示したように、チェレンコフ光は媒質 (輻射体) の厚みがあるほどその光子数は増加す る。しかしながら、厚みが増えるとチェレンコフ光が厚み方向のどの位置で発生したかという不定 性が増えてしまう。そのため、ARICH では屈折率の異なる 2 種類のエアロゲルを用いることで性 能悪化を防いだ。これをデュアルレイヤー方式 (図 3.8 右) と呼んでいる。

図 3.7 シリカエアロゲル

表 3.1 輻射体とその屈折率

物質	屈折率
水	1.333
空気	1.000
ソーダ石灰ガラス (一般的なガラス)	1.51
シリカエアロゲル	$1.007 \sim 1.2$
TOP の石英	1.47

図 3.8 シングルレイヤー (左) とデュアルレイヤー (右)

これにより、2 枚のエアロゲルからのチェレンコフ光が光検出器上で重なるようになり、エアロ ゲルを厚くしても不定性を増やさずに、光子数を増加させることができるようになっている。最終 的に ARICH では屈折率が $n_1 = 1.045$ 、 $n_2 = 1.055$ でそれぞれの厚さが 2 cm のエアロゲルを使用 している。また、エアロゲルは一辺 18 cm の正方形のものを扇形にカットしたものが 248(124×2) 枚設置された。

3.3.2 光検出器 HAPD

光検出器には HAPD(Hybrid Avalanche Photo Detector)(図 3.9) が採用されている [32]。 HAPD は ARICH 専用の光検出器として、浜松ホトニクス (株) と共同で開発した光検出器である。

⊠ 3.9 HAPD

図 3.10 HAPD インストールの様子

ここで光検出器に要求される性能について簡単に述べる。ARICH の光検出器において重要なの は、リングイメージを得るための 1 光子検出で、チェレンコフ光の放射角を精度良く算出する (荷 電粒子を再構成する) ためには、1 荷電粒子あたり少なくとも 10 個程度の光子を観測する必要があ る。また 1.1.2 項で述べたように、運動量 p = 3.5 GeV/c、屈折率 n = 1.05 を仮定した時の荷電 K/π 中間子のリング半径差は約 6 mm のため、検出器 1ch あたりのサイズもそれ以下であること が求められる。さらに、Belle II 測定器内部の 1.5 T の高磁場中で動作が可能であることや、Belle II 実験 10 年間で 1.0×10^{12} neutron/cm²(1 MeV eq.^{*2}) という高い放射線量に耐えることが必要 である。

HAPD は真空管内に 36 チャンネルにピクセル化された APD(Avalanche Photo Diode) が 4 つ 並び、真空管上部は合成石英ガラス製の入射窓で閉じられている。さらに、入射窓の内側にはスー パーバイアルカリが蒸着され、光電面の役割を果たしている。スーパーバイアルカリは、典型的な チェレンコフ光の波長である 400 nm の領域で 30% という高い量子変換効率を持つ。また、底部 には 144 のチャンネルを出力するためのピンが配置されている。

図 3.11 に HAPD の動作原理図を示した。まず、HAPD へ入射した光子は上部の光電面で電 子に変換される。光電面と APD の間には電子の加速用電圧 (~8 kV) が印加されており、これ によって生成された電場によって加速された光電子は APD に打ち込まれた際に 1800 程度の電 子-正孔対を生成する。この生成された電子は APD に印加された逆バイアス電圧によってドリフ トする。この時、電子が格子原子等と衝突することにより 2 次キャリアが生成され、生成された 2 次キャリアがドリフトする中途で再度 2 次キャリアを生成する雪崩増幅が起きる。このような

 $^{^{\}ast 2}$ equivalent。1MeV 換算

図 3.11 HAPD の動作原理

増幅を Avalanche 増幅とよび、その増幅率は約 40 倍である。以上の電子打ち込みによる増幅と Avalanche 増幅により、HAPD は最終的に 7 × 10⁴ 程度の増幅率を持つ。また、この増幅手法は 初段の打ち込み増幅において高い増幅率を得るため、ノイズの影響が比較的少なく、1 光子の検出 能力に優れている。

上記の1光子検出に加え、HAPDは1.5 Tの磁場中で動作可能であり、1.0×10¹² neutron/cm²(1 MeV eq.) に対する放射線耐性も備えている。ピクセルサイズも4.9 mm×4.9 mm で要求性能を満たしている。ARICH ではこの HAPD が 420 台設置され、半径方向に5 層、円状に並んでいる。 表 3.2 に HAPD の仕様を示す。

$4X 0.2$ IIAID \mathcal{O} \mathbb{L}^{p}	表 3.2	HAPD	の仕様
---	-------	------	-----

$73~\mathrm{mm}{\times}73~\mathrm{mm}{\times}2.8~\mathrm{mm}$
$144(36 \times 4 \text{ APD chips})$
合成石英
スーパーバイアルカリ
160 nm \sim 650 nm
400 nm
\sim -8 kV
${\sim}30\%$ @ 400 nm
${\sim}1800$ @ ${\sim}{-}8~{\rm kV}$
$4.9 \text{ mm} \times 4.9 \text{ mm}$
$80 \ \mathrm{pF}$
$\sim 350 \text{ V}$
~ 40

3.3.3 読み出しシステム

前述の通り HAPD は 144ch にピクセル化されており、実機では 420 台の HAPD を使用するこ とからチャンネル数は全体で約 6 万チャンネル以上にもなる。このような多チャンネルの同時読 み出しや、HAPD の増幅率を補える高利得な増幅機能が読み出しシステムには必要である。した がって、これらの要求を満たすような ARICH 検出器独自の読み出しエレクトロニクスが開発され ることとなった [33]。

ARICH の読み出しシステムは、主に Front End Board(FEB) と Merger Board(MB) から構成される。図 3.12 に読み出しシステムのデータフロー概念図を示す。FEB は HAPD1 台につき 1 基搭載されおり、HAPD のアナログ信号をデジタル信号化する回路基板である。MB は 5 基も しくは 6 基の FEB からのデジタルデータを 1 つに統合する役割を持ち、こちらは 72 基使用されている。その後、圧縮等の処理を施して光ファイバー経由の Belle2Link を通して後段の Belle II DAQ にデータが送信される。

図 3.12 ARICH 読み出しシステムのデータフロー

Frond End Board(FEB)

Front End Board は HAPD の信号読み出し用に開発された回路基板で、HAPD からアナログ 信号を処理する SA03 と呼ばれる ASIC(Application Specific Integrated Circuit)4 つと、デジタ ル信号を処理する FPGA(Field-Programmable Gate Array)1 つで構成されている。ASIC とは、 特定の用途向けに多数の機能の回路を1つにまとめた集積回路のことを指し、実装面積の縮小や動 作速度の向上などを達成できるという点で優れている。FPGA も集積回路である点では ASIC と 同様だが、任意の論理機能を現場でプログラム可能であるため、出荷後でも機能を更新することが できる。図 3.13 に FEB の外観を示す。

図 3.13 Front End Board 信号読み出し側 (左) とピンコネクタ側 (右) の外観

図 3.14 に FEB 内の電子回路の構成図を示す。SA03 の読み出しチャンネル数は 36ch で HAPD1 台に対し 4 つ搭載されており、HAPD からのアナログ信号処理を役割としている。前項で述べた ように、ARICH で重要なのはリングイメージを得るための 1 光子検出で、さらに言えば光子検出 の有無のみが必要である。つまり、波高値の測定といったアナログ処理は必要としない。したがっ て SA03 の主要部は比較器 (Comparator) であり、それより前段の増幅器 (Amp.) では増幅率の調 整、波形整形器 (Shaper) では波形立ち上がり時間 (Shaping time) の調整など、HAPD からの微 弱な光子検出信号を処理しやすいように調整するための回路である。増幅器は 4 段階の増幅率調整 が、波形整形器は 4 段階の立ち上がり時間調整が可能である。

図 3.14 Front End Board 内部の電子回路の構成 [34]

SA03 のその他の機能としてはオフセット調整がある。SA03 では、比較器に与える閾値電圧 (threshold 電圧) が全チャンネルで共通になっているため、各チャンネルでオフセット調整を行う ことで、実質的に閾値電圧を微調整できるようになっている。オフセットは粗調節と微調節が各 16 段階の計 256 段階での調節が可能である。

回路後半のシフトレジスタは、光子検出有無の判別から得られたビット情報をある期間保持し外部トリガーによって読み出せるようになっている。このデジタル信号処理を行なう回路が XILINX

製の Spartan-6 と呼ばれる FPGA によって構築されている。また、FPGA は SA03 のパラメータ 設定を行なうとともに、読み出したデータをパケット化して、この後の MB へ送信する役割も持っ ている。

Merger Board(MB)

Merger Board は FEB と後段の Belle II DAQ をつなぐ役割を担っており、FEB からのデータ の受信および統合などのデータ処理、さらに Belle II DAQ へのデータ送信を行なう。DAQ へは、 Belle2Link と呼ばれる検出器からのデータを光ファイバーから読み出し収集するフレームワーク により送られる。

図 3.15 に MB の外観を示す。中央に Virtex-5 と呼ばれる FPGA が配置され、下部に 6 つの FEB との接続部、上部に Belle2Link 接続用の光ファイバーケーブルコネクタがある。

図 3.15 Merger Board の外観

3.3.4 その他の構成要素

この項では、シリカエアロゲル、HAPD、読み出し回路以外の ARICH の構成要素を簡単に説明 する。具体的には、ミラーと冷却システムである。

ミラー

ARICH 検出器にはミラー (反射鏡) が、その外壁を覆うように全部で 18 枚設置されている。これは ARICH 外層壁まで到達した Cherenkov 光を反射させることによって光子数を減少させない

ためである。図 3.16 にミラーの役割の説明図を示す。

図 3.16 ミラーの役割 [35]

ミラーの基板には float glass(一般的なガラス) が用いられており、その表面は薄いクォーツの層 で覆われたアルミニウムでコーティングされている。またミラーの反射率は、Cherenkov 光の放 射および検出で重要となる 250 nm~600 nm の範囲で 85% 以上という高い値を有している。

冷却システム

検出器運転時に、読み出し回路の発熱による温度の上昇を避けるため、ARICH 検出器では読み 出し回路に対して、主に冷水パイプを用いた冷却システムを採用している。HAPD を固定するア ルミフレームに沿って ARICH 全体にパイプが張り巡らされており、これにより冷却を行ってい る。さらに、一番の熱源である MB には、MB の FPGA に直接あたるようなアルミプレートを設 置することで、より効果的に冷却を行うことができるようになっている。また最内径部分は、窒素 ガスによっても冷却されているが、これはシリカエアロゲルの吸水を防ぐためである。

第4章

ARICH における光検出器と読み出しシ ステムのアップグレード

ARICH の光検出器には浜松ホトニクスと共同開発を行った HAPD が用いられている。現在、 ARICH のアップグレードとして新たな光検出器を導入することが検討されており、MPPC(Multi-Pixel Photon Counter) と呼ばれる光検出器が候補として挙がっている。また、MPPC が採用さ れることになれば信号読み出しシステムである ASIC も MPPC 専用のものが必要になる。

この章では、ARICH 検出器アップグレードの概要と採用候補である MPPC の特性等について 述べる。

4.1 光検出器 HAPD の現状

現在、HAPD は ARICH 用の光検出器として十分な性能を発揮している (図 4.1) が、製造メー カーである浜松ホトニクスは HAPD の生産を既に終了している。HAPD が Belle II 実験 10 年間 の放射線量に耐えられることは既に検証されている [36] ものの、今後のピークルミノシティ向上に よるビームバックグラウンドの増加などによる想定外の故障の発生や、Belle II 運転期間の延長な どの可能性がある。そのため、ARICH 検出器のアップグレードに向けて新たな光検出器を選定す ることとなった。

4.2 新たな光検出器候補 MPPC

MPPC(Multi-Pixel Photon Counter) は、SiPM(Silicon PhotoMultiplier)(図 4.2) と呼ばれる 受光素子の一種で、浜松ホトニクスの製品である。ARICH では、新たな光検出器としてこの MPPC の採用を検討している。

図 4.1 Phase3 初期の ARICH のイベントあたり APD あたりのヒット分布 [37]

図 4.2 様々なタイプの MPPC[38]

4.2.1 動作原理と構造

MPPC が HAPD を始めとした他の半導体デバイスと大きく異なる点は、APD をガイガーモー ドで動作させるという点である。APD に印加する逆バイアス電圧をブレークダウン電圧 (降伏電 圧) より大きくすると、流れるリーク電流の値は急激に大きくなり、入射光量の大小に関係のない 素子固有の飽和出力が発生する。この電圧で APD を動作させることをガイガーモードと呼ぶ。一 方で、HAPD のように APD をブレークダウン電圧以下の印加電圧で動作させることをノーマル モードと呼んでいる。

MPPC の構成を図 4.3 に示した。MPPC はガイガーモード APD とクエンチング抵抗を組み合 わせたものを 1 ピクセルとし、これが数百~数千個集まって 2 次元的に接続されたものが 1 チャ ンネルを構成する。ガイガーモードにおいては、1 光子の検出でも大きな飽和出力を得られる一方 で、素子内部の電界が保たれる間はこの飽和状態は継続してしまう。よって、次の光子を検出する ためには APD の動作電圧を下げる必要がある。この役割を担っているのがクエンチング抵抗であ り、出力電流がクエンチング抵抗を流れる際に電圧降下を起こし、直列に接続された APD はその 印加電圧が下がる。図 4.4 に示すように、MPPC の出力信号は鋭い立ち上がりを持ち、クエンチ ング抵抗によって立ち下がりは比較的なだらかになる。

図 4.4 MPPC の典型的な波形

MPPC の各ピクセルは、それぞれが光子の入射時に同じ波高の出力を出す。したがって図 4.5 のように、複数のピクセルに光子が入射した場合、MPPC の出力はそれらが重なり合った高さの 信号になる。ただし、1 ピクセル内に複数の光子が入射した場合には重なり合った高さでは出力さ れず、MPPC は 1 光子としてカウントしてしまう。一般に、1 ピクセルに複数の光子が入射する 事象が多い場合には入射光子に対する MPPC の出力の線形性が悪化することになるが、ARICH ではリングイメージの直径が 10 cm 以上という広い範囲に合計 40 個程度の光子が飛来するため、 このような事象はほとんど無いと考えて良い。

4.2.2 選定候補

以下に、選定候補である7つの MPPC とそのスペックについて簡単にまとめた [40][41][42]。

ここで、PDE(Photon Detection Efficiency: 光子検出効率)とは MPPC の感度を表す量で、量 子効率と開口率、アバランシェ確率の積で求められる。このうち、アバランシェ確率は電圧依存性

図 4.5 MPPC のフォトカウンティングイメージ [39]

サンプル	ピクセルピッチ	增倍率*1	PDE	チャンネルサイズ	静電容量
S13361-3050AE	50 um	1.7×10^{6}	40 %	$3.0 \times 3.0 \text{ mm}^2$	$320 \mathrm{ pF}$
S13361-3075AE	$75 \mathrm{um}$	4.0×10^{6}	50~%	$3.0 \times 3.0 \text{ mm}^2$	$320 \mathrm{ pF}$
S14160-1315PS	15 um	$3.6{ imes}10^5$	32~%	$1.3 \times 1.3 \text{ mm}^2$	100 pF
S14160-1310PS	10 um	$1.8{ imes}10^5$	18 %	$1.3 \times 1.3 \text{ mm}^2$	100 pF
S14160-3010PS	10 um	1.8×10^{5}	18 %	$3.0 \times 3.0 \text{ mm}^2$	$530 \mathrm{\ pF}$
S14160-3015PS	15 um	3.6×10^{5}	32~%	$3.0 \times 3.0 \text{ mm}^2$	$530 \mathrm{\ pF}$
S14160-3050HS	50 um	2.5×10^{6}	50~%	$3.0 \times 3.0 \text{ mm}^2$	$500 \ \mathrm{pF}$

表 4.1 MPPC の仕様

を持つ。なお、S13361-3050AE 及び S13361-3075AE は 64 チャンネルが並んだアレイタイプで、 それ以外は単チャンネルの MPPC である。

表 4.1 に示した通り、MPPC はそれぞれ異なった特徴を持っており、選定のためにはそれぞれ の特性をきちんと理解することが必要である。また、増幅率と静電容量にも注目が必要であり、増 幅率は $O(10^5) \sim O(10^6)$ という 10 倍以上の幅を持っており、これは後の読み出し回路でどの程度 増幅するかに関わってくる。静電容量も MPPC それぞれの値はバラバラで、一般に容量が大きく なれば信号幅も大きくなる。つまり、読み出し回路の時間分解能に関わってくる。

4.3 MPPC の利点と課題

MPPC は低電圧で動作し、高い増幅率や検出効率などといった特徴があり、導入によるメリットとして様々なことが期待できる。しかしながら、MPPC には高ダークカウントレートと低放射線耐性といった特徴もある。これらは、ARICH において使用するうえで大きな課題である。

^{*1} それぞれの MPPC のブレークダウン電圧から定義されるオペレーション電圧を印加した際の増幅率

4.3.1 MPPC 導入によるメリット

まず、以下に MPPC 導入によるメリットを列挙する。

- 1. 位置精度の向上
- 2. 検出効率の向上
- 3. 増幅率の向上
- 4. 動作電圧の低下
- 5. 印加電圧数の減少
- 6. コストの減少

1 と 2 がもたらすものは、チェレンコフ光放射角 θ_c の測定精度の向上である。光検出器 1 チャ ンネルのサイズが小さくなることで、より正確に光子の入射位置を同定することができるだけでな く、検出効率の向上で、光子の入射を逃すことなく ARICH のヒットとして得ることのできる確率 が高まることが期待できる。

4 と 5 で期待できることは、検出器の運用が容易になるという事である。現行の光検出器である HAPD には、1 台につき 6 種類の電圧を供給する必要があった。特に、そのうちの一つは-8kV と いう高電圧が要求された。しかしながら、新たな光検出器候補である MPPC は 1 台につき必要な 電圧は 1 系統のみで、その値もおよそ 50V という低電圧で動作する。

3 と 6 については記述の通りであるが、高い増幅率はそれだけで考えれば S/N 比が良くなる ことに加え、信号読み出し回路で大きく増幅率を稼ぐ必要がない。コストについても、HAPD と MPPC を単位面積の金額で比較した場合、値段を大きく抑えることができる。

4.3.2 ダークカウントレート

MPPC の特性にダークパルスがある。MPPC では、光によって生成されたキャリアだけでな く、熱的に発生したキャリアによってもパルスが発生する。これをダークパルスと呼び、入射光子 による真の信号とこのダークパルスは、全く同じ形の信号であるため形状から区別することはでき ない (図 4.6)。

観測されたダークパルスの数をダークカウント、1 秒あたりのダークパルスの数をダークカウン トレートと呼ぶ。ダークカウントレートの単位は cps(counts per second) と表される。cps は周波 数の単位 Hz と同じ次元を持っているが、ダークパルスは周期的に起こるものではないので、Hz とは区別して用いられている。また、浜松ホトニクスの定義として、暗状態において 0.5_{p.e.} の閾 値を超えるパルスの数をダークカウントレートと呼んでいる [39]。ダークカウントレート N_{0.5p.e.} は非常に高い温度依存性を持ち、以下の式で表される。

$$N_{0.5p.e.}(T) = AT^{\frac{3}{2}} \exp\left[\frac{E_g}{2kT}\right]$$
(4.1)

図 4.6 ダークパルス

ここで、*T* は全体温度 [K]、*A* は任意定数、*E_g* はバンドギャップエネルギー [eV]、*k* はボルツマン 定数 [eV/K] である。ダークカウントレートの動作温度範囲での温度依存性の目安として、温度が 8 ℃あがるとレートが倍 (8 ℃下がるとレートが半分) になると言われている。

表 4.1 で示したような MPPC サンプルは、最大で 1 Mcps を超えるようなダークカウントレートを持っている。

4.3.3 低放射線耐性

高エネルギー実験での使用を考えると,放射線耐性は重要な要素の一つである。MPPC はシリ コンデバイスであるため、放射線により大きく損傷する。Belle II 実験において言えば、Radiative Bhabha 散乱によって生じた γ 線が Belle II 測定器外部の構造体に当たり、それにより中性子が散 乱され、検出器に返ってくることを考えなければならない。

図 4.7 に放射線損傷の概念図を示す。APD 内 (結晶内) のシリコン (Si) 原子に中性子が衝突す ると、原子が格子間に移りその後に空孔が残ることがある。この格子欠陥をフレンケル欠陥と言 い、価電子帯と伝導帯の間に新たな準位を形成することで、ダークパルスやリーク電流を増加させ る。また、アバランシェ増幅過程においてキャリアが格子欠陥に一時的に捕獲されることで、アフ ターパルスが生じやすくなる。なお、衝突によって原子が結晶の外にはじき出された場合、その欠 陥はショットキー欠陥と呼ばれる。ショットキー欠陥によっては新たな準位は形成されない。

4.4 本研究の目的

これまで述べたように、ARICH 光検出器には、浜松ホトニクスと共同開発した HAPD という ARICH 専用の光検出器が用いられている。そして現在、ARICH のアップグレードとして新たな 光検出器の導入が計画されており、MPPC(Multi-Pixel Photon Counter) と呼ばれる光検出器が

図 4.7 APD 内での中性子の振る舞い

候補として挙げられている。もし MPPC が採用されることになれば、アナログ信号処理回路であ る ASIC についても、光検出器の様々な特性の違いにより、MPPC 専用のものが必要になる。

本研究では、MPPC 専用の信号読み出し回路として ASIC の試作及びシミュレーションによる 回路評価を行った。また、ASIC の性能評価のためのテストボードも実際に作成し、テストパルス を用いて基本的な動作確認も行った。

第5章

MPPC 用信号読み出し ASIC の開発

ARICH の新たな光検出器として MPPC が採用されることになれば、MPPC 専用の信号読み出 し ASIC も必要である。この章では、ASIC 開発及びテストボード作成と ASIC 性能評価について 述べる。

5.1 ASIC の製作

5.1.1 ASIC への要求性能

まずは ARICH で用いる信号読み出し ASIC としての要求性能についてまとめる。今回の場合、 具体的にどの MPPC を使用するかは元より MPPC を採用するかどうかも検討中であるため、そ の評価のための試作用 ASIC としての要求性能も述べる。

一つ目は、1 光子とノイズを弁別する閾値 (threshold 電圧) を設定し、信号をデジタル化するこ とである。ここで言うノイズとは、回路ノイズといった検出器以外が由来のノイズであり、ダーク パルスはこれに当てはまらない。3 章から繰り返し述べているように、ARICH において重要なの はリングイメージを得るための1 光子検出で、MPPC 各チャンネルでの光子検出の有無のみが必 要である。つまり、ASIC の役割として光検出器からのアナログ信号をデジタル化することが一番 に要求される。

二つ目は、増幅率を調整することである。基本的に光検出器への印加電圧はチャンネル間で共通 であり、各チャンネルの増幅率は同じとは限らない。また MPPC モジュールでも増幅率の差はあ るため、それら増幅率の差を調整することが必要である。

三つめは、オフセット調整である。ここでオフセットとは、入力がゼロの時に現れる出力電圧 (ベースラインの電圧)のことを指す。デジタル化のための閾値電圧もまた、検出器のチャンネル間 で共通である。したがって、全てのチャンネルでベースラインをある程度揃え、閾値電圧をかけや すくするために、オフセット調整が必要である。図 5.1 にオフセットの概要図を示す。

四つ目は、MPPC の真の信号とダークパルスを区別できることである。5.3.2 項で述べたように MPPC は高いダークカウントレートを持っており、この中で真の信号をなるべくロスなく得るた

図 5.1 オフセット電圧

めには、信号とダークパルスが近接して入ってきた場合にもきちんと区別できる必要がある。

五つ目は、HAPD 及びその読み出しシステムと協調した動作が可能であることである。HAPD は現在 ARICH で 420 台使用されているが、もし MPPC が使用された場合でも HAPD 全てを一 斉に取り換えるわけでなくて、故障したものあるいは動作が不安定なもののみを取り換えることが 想定されている。したがって、光検出器には HAPD と MPPC が、読み出しシステムにはそれぞ れ専用の ASIC が用いられることになるため、MPPC 用 ASIC としては既存のものと共調して動 作することが求められる。

最後は、選定中の7つの MPPC 全てに対応できる機能を持つ ASIC であることである。5.2.2 項で述べたように、選定中の MPPC はそれぞれ特性が異なっており、特に増幅率と静電容量は読 み出し回路で要求される機能に大きく影響を与える。

5.1.2 ASIC の概要

ARICH への使用が検討されている MPPC 用 ASIC として設計されたこの ASIC には「TF01A64」という名前が付いている。以降はこの名前を用いることとする。

TF01A64 の各回路は MOSFET (Metal-oxide-semiconductor field-effect transistors) により構 成されている。MOSFET はトランジスタの一種で、n型半導体*1とp型半導体*2で構成され、 ソース、ドレイン、ゲートの三端子がある [43]。ゲートに印加する電圧によって、ソースとドレイ ン間の伝導度を変調することにより、ソースとドレイン間に流れる電流を制御する。こういった特 性から、MOSFET は主にスイッチング素子として用いられている。また MOSFET は、n チャン ネル・トランジスタ (nMOS) と p チャンネル・トランジスタ (pMOS) に大別することができる。 nMOS は、伝導チャンネル部が p タイプであって、ゲートに伝導チャンネル相対で正の電圧を印 加すると伝導チャンネルが n タイプに反転し、ソース・ドレイン間が導通するようになっているト ランジスタである。一方 pMOS は nMOS の逆で、伝導チャンネル部が n タイプであり、負の電

^{*1} 負の電荷を持つ自由電子が多数キャリアであることから、negative の頭文字を取っている

^{*&}lt;sup>2</sup> positive の頭文字を取っている

圧を印加して動作させるトランジスタである。図 5.2 と図 5.3 にそれぞれ nMOS トランジスタと pMOS トランジスタの概略図を示す。

図 5.2 nMOS トランジスタ

図 5.3 pMOS トランジスタ

MOSFET の大きな特徴は、トランジスタの特性をゲートの形状 (W,L) によって大幅に制御で きることである。ここで W と L はゲートの形状を表すためのパラメータで、 W はソースとド レーンが相対している横方向の距離をあらわし、L はソースとドレインを隔てている距離を表して いる。こういった特性から、W と L を決めることでオン抵抗 (MOSFET をオンにした時のドレ イン・ソース間の抵抗値)を決めることができるので、MOSFET を抵抗として用いる場合も多い。 オン抵抗は次の式 5.1 で表される。

$$R_{ON} = \frac{1}{\frac{W}{L}\mu C_{ox}(V_G - V_T)}$$
(5.1)

 μ は半導体中の電子の移動度、 C_{ox} は単位面積当たりのゲート酸化膜容量で、 V_G と V_T はそれ ぞれゲート電圧と MOSFET をオンさせるための閾値電圧を表す。 C_{ox} は主に酸化被膜の厚さに よって決まる。

また MOSFET は、ゲートが絶縁されていること、ドレイン抵抗が高いこと、さらには集積度 を高くできること等の有利な特徴を有しており、アナログ回路にもデジタル回路にも広く使用さ れる。

TF01A64の半導体プロセスには、TSMC(Taiwan Semiconductor Manufacturing Company, 台湾積体電路製造)の0.35 μ m Mixed Modeを用いている。この0.35 μ m という数字は、プロセ スノードと呼ばれるデバイスの特定部分の寸法を表している。一般的に、プロセスが微細化される ほどに高性能なデバイス製作が実現可能であるが、これはコストや消費電力とトレードオフの関係 になる。図 5.4 に TSMC の半導体プロセスの歴史を示す。

表 5.1 に TF01A64 の簡単な仕様を示す。

CCR(Central Control Resister) はチップ全体で共通に用いられるレジスタで、LCR(Local Control Resister) は信号チャンネルごとに設けられているレジスタである。CCR を通して、レジ スタ選択や書き込み、読み出しを行う。LCR それぞれには次節で述べるような回路がある。

また、図 5.5 に TF01A64 回路図の最上位階層を示す。202 のピン数のうち、アナログ信号入力

図 5.4 TSMC におけるプロセスノードの歴史 [44]

名称	TF01A64
半導体プロセス	TSMC 0.35 μ m Mixed Mode
読み出しチャンネル数	64 ch
ピン数	202 pin
レジスタ数	CCR: 1
	DAC レジスタ: 4
	LCR: 64
電気的仕様 (アナログ)	VDD: +1.65 V
	Gnd: 0 V
	VSS: -1.65 V
電気的仕様 (デジタル)	VDD1: +1.65 V
	DGND: 0 V
	VSS1: -1.65 V

表 5.1 TF01A64 の仕様

(AIN) が 64 ピン、デジタル信号出力 (DOUT) が 64 ピン存在し、これは読み出し信号チャンネル 数に対応する。また、その他 ASIC のオペレーションやアナログ信号モニタピンなどが 73 ピンあ り、1 ピンだけ NC(Non Connection) がある。

5.2 TF01A64 の基本回路構成

図 5.6 に MPPC 用 ASIC の基本回路構成図を示す。回路は、増幅器-波形整形器-増幅器-オフ セット調整-比較器、から構成される。この節では、今述べたような回路それぞれについてもう少 し詳しく説明する。

図 5.6 ASIC の基本回路構成

増幅器1

前段の増幅部は、カレントコンベア部と増幅率調整用の可変抵抗部に分かれている。カレントコ ンベア (図 5.7)は、標準的なオペアンプで使用される電圧フィードバックではなく電流フィード バックを備えた回路で、高い周波数帯域を持ち、また高速動作が可能である。可変抵抗ではトラン ジスタの制御により、4 段階の抵抗値に設定できる。これによって、4 段階の信号増幅が可能であ る。図 5.8 に可変抵抗部の回路を示す。

図 5.7 カレントコンベアの回路ブロック

図 5.8 可変抵抗部の回路ブロック

SWL04 は CMOS であり、オン抵抗が 5 kΩ になるように設計されている。ロジックゲートを通 して 4 つ SWL04 のうちの 1 つのみがオンになることにより、5 kΩ、10 kΩ、15 kΩ、20 kΩ の 4 つの抵抗値を実現できる。

波形整形器

波形整形器は微分回路部とポールゼロキャンセル回路部から構成される。微分回路は信号を鋭く するが、これは主にパイルアップを解消するためである (5.4.2 項参照)。パイルアップとは、信号 のテールが十分に落ち切る前に次の信号が被ってきてしまい、前の信号のテールが加算されて本来 の信号の高さよりも高い信号が出てしまう現象を言う。パイルアップは後述の比較器において、デ ジタル信号化するための正しい閾値電圧の設定に大きな影響を及ぼす。特に MPPC は高いダーク カウントレートを持つため、パイルアップが起こる可能性は非常に高い。

また、微分回路ではアンダーシュートが発生してしまう。アンダーシュートはパイルアップと同 様に次の信号に影響を与えるので、このアンダーシュートの効果をを最小限におさえるためポール ゼロキャンセルを行う。

増幅器2

後段の増幅器の役割は、MPPC サンプルごとの増幅率の差をある程度揃えることにある。5.2.2 項で述べたように、7 つの MPPC サンプル間では最大で 10 倍以上の増幅率の差があるため、こ れに対応するための増幅器である。なおこの後段増幅器についても電流フィードバックである。 図 5.6 において、分岐した回路のうち、波形整形器を含んだ上側の回路を用いる場合を Low Gain Mode、筧整形器を含まない下側の回路を用いる場合を High Gain Mode と呼ぶ。以下ではこの High/Low Gain Mode という名前を用いる。具体的にどのような使い分けをするかというと、増 幅率が $\mathcal{O}(10^5)$ 程度の MPPC を用いる場合には High Gain Mode、 $\mathcal{O}(10^6)$ 程度の場合には Low Gain Mode を用いる。このように、High/Low Gain Mode の増幅器 2 の増幅率には 10 倍程度の 差がある。

Low Gain Mode にだけ波形整形器が搭載されている理由であるが、それは増幅率 $\mathcal{O}(10^6)$ の MPPC 信号は $\mathcal{O}(10^5)$ の MPPC と比べて非常に長い立ち下がり時定数を持っているためである。 増幅率と同様、信号幅についても High Gain Mode と Low Gain Mode である程度同じ大きさを 持つように、波形整形の時定数を決定している。

オフセット調整回路

オフセット調整は DAC(Degital Analog Convertor) によって行われる。電流出力 DAC によっ て、トランジスタの動作電流を調整してオフセット電圧を調整する。オフセット調整には 8 ビット 用意されており、MSB(Most Significant Bit)*³は符号を、残りの 7 ビットで大きさを決定する。 オフセット調整回路を図 5.9 に示す。

図 5.9 オフセット調整回路ブロック

^{*&}lt;sup>3</sup> 最上位ビットのこと。対して最下位ビットのことを LSB(Least Siginificant Bit) と呼ぶ。

要求性能でも書いたように、オフセット調整の主な役割はチャンネルごとのベースラインのズレ を調整することだが、チャンネルごとのわずかな波高の差 (増幅率の差) もオフセット調整によっ て対応することも考えられる。

比較器

比較器の出力には2種類存在する。一つ目はいわゆる普通の比較器の出力 (図 5.10) で、入力信 号が閾値を超えている間だけ矩形波を出力するパターンである。以下ではこれを閾値型と呼ぶこと にする。二つ目は今述べた閾値型の信号の立ち上がりのみを見て、20 ns で固定された幅の矩形波 を出す型である。以下ではこれを One Shot 型と呼ぶ。

図 5.10 比較器 (閾値型)の回路ブロック

回路中でこの2つの出力は常に用意されていて、スイッチ(後の5.8節で述べるレジスタの設定) の切り替えにより、どちらの出力を後段に送るかを決定する。図 5.11 に比較器の出力選択の回路 を示す。D0 と D1 が 2 つの出力、S1 がスイッチに対応する。

図 5.11 比較器の出力選択部の回路ブロック

5.3 SPICE シミュレーションと入力信号の設定

SPICE(Simulation Program with Integrated Circuit Emphasis) は、代表的な回路シミュレー タの一つである。電子回路の製作において、開発対象の機能を具体的に電子回路として実現してい くステップ、特にアナログ回路に対して用いられる。回路図エディタを使って作成した電子回路か ら、SPICE が認識できるフォーマット (ネットリスト) に変換することで、回路シミュレーション を実行する。ネットリストには回路素子の接続情報や素子値、または解析設定などが記述されてい る。本研究では Mentor 社の T-Spice[45] を用いた。

実際の ASIC には MPPC を初めとした検出器の部分は当然含まれないが、ASIC 製作に当たっ ての回路シミュレーションでは MPPC の等価回路を設定し、疑似信号を入力する必要がある。 TF01A64 には High Gain Mode と Low Gain Mode があるので、以下ではそれぞれで設定した入 力信号について述べる。

図 5.12 Low Gain Mode の時に使用する入力信号の波形

図 5.12 は Low Gain Mode における入力信号の波形である。入力電荷 4.0×10⁶ fC、端子間容量 320 pF、信号立下り時定数 100 ns を設定した。

また、図 5.13 は High Gain Mode における入力信号の波形である。こちらは入力電荷 3.6×10⁵ fC 端子間容量 100 pF、信号立下り時定数 9 ns を設定した。

5.4 各回路の基本性能の見積もり

この節では、図 5.6 で示した ASIC を構成する回路における T-Spice によるシミュレーション結 果について述べる。なお、増幅器については 1 と 2 の両方を合わせて述べる。

5.4.1 増幅器

図 5.14 は、増幅器 1 において増幅率を変更した際の増幅器 2 後の出力信号である。4 つの波形が 4 通りの増幅率に対応している。なお、図は Low Gain Mode における波形を示している。また、表 5.2 に High/Low Gain Mode それぞれでの増幅器出力の波高値をまとめた。Step は増幅率

図 5.13 High Gain Mode の時に使用する入力信号の波形

の設定値を表している。

図 5.14 増幅率調整後の波形図。4 つの波形が 4 通りの増幅率に対応している。

増幅率は可変抵抗部の抵抗値 (5 kΩ、10 kΩ、15 kΩ、20 kΩ) に比例して大きくなるため、増幅 率を最小に設定した際の信号波高を1とすれば、あとの3つのパターンは2倍、3倍、4倍となる のが理想である。しかしながらシミュレーションはそのようにはなっておらず、増幅率が高いほど 伸び切らなくなっている。これはカレントコンベア回路の周波数特性によるもので、一般に増幅率 が高いほど周波数特性は悪化する。

参考として、図 5.15 に可変抵抗値の周波数依存性を示した。この解析は電流1 mA を流した際

Step	High Gain Mode [mV]	Low Gain Mode [mV]
Step 0	23.78	34.59
Step 1	39.24	56.03
Step 2	49.44	70.39
Step 3	57.18	80.87

表 5.2 High/Low Gain Mode における波高値

の抵抗値での電圧降下を測っている都合上、縦軸の単位は [V] になっている。増幅器に時定数 100 ns の信号が入射すると考えると、1/100 ns≃10 MHz であるため可変抵抗部は十分な周波数特性を 持っていると言うことができる。

5.4.2 波形整形器

図 5.16 は波形整形器の機能をシミュレーションした波形図である。上の図は増幅器 1 の後の波 形を示していて、下の図は増幅器 2 の後の波形を示している。また、パイルアップが解消されるこ とを検証するため、同波形の信号を 2 つ、50 ns の間隔で入力している。なお、増幅器の増幅率は 最小 (Step 0) に設定している。

上の図ではパイルアップの影響が顕著に見えるが、下の図では解消されているのが分かる。また、アンダーシュートの影響もほとんど見えない。ここでパイルアップが解消されているというのは、後で述べる比較器において閾値電圧をかけられるかどうかという点に注目している。図 5.16 について言えば、波高の 50% 程度までは閾値電圧をかけて二つのデジタル出力が得られると考え

図 5.16 波形整形器の前(上)と波形整形器の後(下)での波形図

られる。

なお、微分回路の時定数としては、High Gain Mode における増幅器 2 の出力と、Low Gain Mode における増幅器 2 の出力が同程度の信号幅になるように調整しているため、定量的な設定で はない。図 5.17 に High Gain Mode における増幅器 2 後の波形図を示す。図 5.14 と比較して同 程度の信号幅を持っていることが確認できる。

図 5.17 High Gain Mode における増幅器 2 後の波形図

5.4.3 オフセット調整

図 5.18 はシミュレーションによるオフセット調整前とオフセット調整後の波形を示した図であ る。中央にある青色の波形がオフセット調整なしの波形を示していて、残り 16 つの赤色の波形が オフセット調整値最大を含むいくつかのパターンを表している。なお、一番上に位置しているのが プラス方向最大に調整した波形で、一番下に位置しているのがマイナス方向最大に調整した波形で ある。

図 5.18 オフセット調整後の波形図

5.2 節で述べたように、TF01A64 は 8 ビット 255 通り (256-1) のオフセット調整が可能で、1 ビットあたり約 2 mV の調整が可能である。したがって最大では、プラス方向とマイナス方向に それぞれ約 254 mV 変位させることができる。図 5.19 に、図 5.18 に示した 16 パターンでのオフ セット調整の値をグラフにした。なお、値はすべて、オフセット調整なしの場合を基準とした値に なっている。

プラス方向とマイナス方向で若干の差があるが、これは電流の向きを変える為にミラー回路を用 いているためである。ミラー回路の精度に依存して若干の誤差が発生している。

5.4.4 比較器

図 5.20 はシミュレーションによる比較器の入出力の波形を示した図である。

最上部にある赤と紫の波形はそれぞれ、比較器への入力波形と閾値電圧を表している。また、中 部の黄色い波形は閾値型の出力で、下部の青い波形は One Shot 型の信号である。また示した図で は、閾値型と One Shot 型はどちらも負の方向に出力されているが、どちらかを選んだあとの最終 的な出力は正の方向である。

図 5.19 オフセット調整後の波形図

図 5.20 比較器の出力。上段が比較器への入力信号と閾値電圧、中段が閾値型の出力、下段が One Shot 型の出力を表している。

ここで One Shot 型の役割であるが、それは後段の FPGA へ送るデジタル信号幅を短くするこ とができる場合があることに意味がある。MPPC を ARICH にて運用する場合、信号とダークパ ルスを区別するためには SuperKEKB 加速器での e⁺e⁻ 衝突のタイミングと同期させる (トリガー 信号と考えて良い) ことで ARICH の荷電粒子の到達時間を予測し、タイミングで区別することが 考えられるが、その際には信号幅が短いほうが、コインシデンスなどを取った際により詳細な入射 時間を決定できるだけでなく、後段の回路で処理しやすい形となるからである。なお、One shot 型を 20 ns よりも小さな値に設定しなかったのは、小さすぎるとコインシデンスを取ることが難し くなる可能性があるからである。さらに、後段の FPGA でこれより短い幅に短縮して運用するこ とも可能なため、無理に短くする必要性はない。

また、One Shot 型の信号を用いると一見、時間分解能が良くなるように見えるかもしれないが、 これは単純に言えば波形を短縮しているだけなので、短縮したその分は単に Dead Time(不感時 間)*4になるだけだという事に注意したい。

5.5 雑音解析

検出器から発生する信号は一般に非常に小さいため、付随する回路雑音と競合する場合がほとん どである。回路雑音には、電源や周囲の環境から混入する「電気雑音」と、電子素子や信号源に特 有の物理現象としての「電子雑音」がある。前者の「電気雑音」は、付加的な対処が可能である一 方で、後者の「電子雑音」については回路設計における対策なくしては、それを低減することはで きない。したがって、回路の設計段階で電子雑音の影響について検証する必要がある。

5.5.1 電子雑音の種類

電子雑音には、その発生原因よって分類すると、ショットノイズ (Shot noise)^{*5}、サーマルノイズ (Thermal noise)、フリッカノイズ (Flicker noise) などがある。この項では、これらの雑音について説明する。

ショットノイズ

ショットノイズは、ダイオードの逆バイアス電流のような検出器の漏れ電流に付随して発生する 雑音である。電流を構成する電荷キャリアは一般に粒子である電子であるため、キャリアの確率的 な運動によって揺らぎが生じる。この揺らぎがショットノイズと呼ばれるもので、雑音の大きさは キャリアの数が少ない、つまり電流の値が小さいほど顕著に表れるため、上で述べたように漏れ電 流が主な原因と考えて良い。

雑音パワーは、

$$i_n^2 = 2qI \quad [A^2/Hz] \tag{5.2}$$

と表される。ここで q は素電荷、I は漏れ電流を表わしている。ただし、漏れ電流源がアバラン シェ増幅を用いた検出器の場合、キャリアの数はこの増幅によって増倍されるため、素電荷 q には 増倍率 M を掛けた qM という値を用いる必要がある。この理由により、同一の漏れ電流であって も、通常のフォトダイオードに比べて、アバランシェ・フォトダイオードのほうが雑音の値は大き くなる。

また、その特性から温度を下げても雑音の大きさは変わらず、全周波数に均等に含まれるホワイ

^{*4} 次の事象を検出できるようになるまでの時間

^{*&}lt;sup>5</sup> ポアソンノイズ (Poisson noise) とも言う

トノイズ*6である。

サーマルノイズ

サーマルノイズとは熱雑音のことで、キャリアの不規則な熱運動によって引き起こされる雑音で ある。この現象を発見したジョン・バートランド・ジョンソンとハリー・ナイキストの名前から、 ジョンソン・ノイズまたはジョンソン-ナイキスト・ノイズとも呼ばれる。

雑音パワーは、

$$i_n^2 = \frac{4kT}{R} \quad [A^2/Hz] \tag{5.3}$$

または、

$$v_n^2 = 4kTR \quad [V^2/Hz] \tag{5.4}$$

で与えられる。ここで、*k*_B はボルツマン定数、*T* は導体の温度 [K]、*R* は抵抗値 [Ω] である。サー マルノイズも、全周波数に均等に含まれるホワイトノイズである。

フリッカノイズ

フリッカノイズは電子素子がキャリアートラップを有しているような場合に生じる雑音で、特に MOSFET においては、酸化膜と半導体の界面にキャリアートラップが存在し、これによってゲー トに直列な雑音電圧が発生することが知られている。雑音の大きさが大まかに 1/f 比例する周波数 群が存在するため、別名 1/f ノイズとも呼ばれる。

雑音パワーは、

$$v_n^2 = \frac{k_f I_D^{a_f}}{C_{ox} W L f} \quad [V^2/Hz]$$
(5.5)

のように表される。*k_f* と *a_f* はそれぞれフリッカ雑音係数、フリッカ雑音指数と呼ばれる値で、フ リッカノイズに関するパラメータである。式 5.5 より、MOSFET のゲート面積 (W,L) に大きく依 存するため、これらの値を大きくすることでフリッカノイズは低減できるが、素子の面積とトレー ドオフの関係になる。

5.5.2 雑音のシミュレーション結果

High Gain Mode

まずは High Gain Modde における雑音解析で、図 5.21 にそのシミュレーションの結果を示した。雑音成分としては、前項で述べたようなショットノイズ、サーマルノイズ、フリッカノイズが 全て含まれている。

上図は雑音の周波数成分を表していて、下図はそれを積分したものである。単位はそれぞれ、 V/√Hz と V である。V/√Hz に関しては、前項で示した雑音パワーの単位 V²/Hz の平方根に

^{*6} 可視光線のスペクトラムと周波数を対比して表現したとき、白色は全ての周波数成分が均等に含まれることからこう 呼ばれる

図 5.21 High Gain Mode における雑音解析

なっている。雑音値としては積分が飽和した部分での値を用いて評価するが、これは積分が飽和した部分が雑音の RMS(Root Mean Square Value)*⁷となるからである。今回は 0 Hz~0.9 GHz の 積分値を採用した。また、4 つの波形は増幅器 1 における 4 通りの増幅率に対応している。表 5.3 に信号と雑音の波高についてまとめた。

Step	信号波高 [mV]	ノイズ波高 [mV]	S/N 比
Step 0	23.49	1.45	$\sim \! 16.2$
Step 1	38.74	2.50	$\sim \! 15.5$
Step 2	49.20	3.42	~ 14.4
Step 3	56.91	4.53	$\sim \! 12.6$

表 5.3 High Gain Mode における雑音値と S/N 比

4 通りのどの場合でも S/N 比^{*8}は 10 を超えており、雑音の回路への影響は十分小さいことが確認できる。

ここで、積分が飽和した部分が RMS と等しくなる理由について述べるが、これはパーセバル (Parseval) の定理によって理解することができる。ある関数を *x*(*t*)、そのフーリエ変換 *X*(*f*) とし たとき、次式が成り立つ。

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df$$
(5.6)

^{*&}lt;sup>7</sup> 実効値のこと

^{*&}lt;sup>8</sup> Signal と Noise の比

この 5.6 式が意味するところは、実時間における電力はフーリエ成分の電力の総和に等しいという事である。したがって、実時間の RMS を求めるためには周波数空間での雑音電力を周波数が ∞ のところまで積分する必要があるが、適当なところでの打ち切り周波数が積分が飽和するところに対応している。

Low Gain Mode

次に Low Gain Mode における雑音解析で、図 5.22 はそのシミュレーションの結果を示している。

図 5.22 Low Gain Mode における雑音解析

High Gain Mode の時と同様に、上図及び下図は雑音の周波数成分とそれを積分したものを表してして、4 つの波形は 4 通りの増幅率に対応している。また、雑音値に関しても同様に 0 Hz~0.9 GHz までの積分値を採用している。表 5.4 に信号と雑音の波高についてまとめた。

Step	信号波高 [mV]	ノイズ波高 [mV]	S/N比
Step 0	34.54	1.55	~ 22.3
Step 1	55.98	2.09	~ 26.8
Step 2	70.34	2.40	~ 29.3
Step 3	80.81	2.63	~ 30.7

表 5.4 Low Gain Mode における雑音値と S/N 比

Low Gain Mode においては S/N 比は 20 を超えており、こちらについても雑音の回路への影響 は十分小さいことが確認できた。

また、High Gain Mode と比べて Low Gain Mode の S/N 比のほうが良い理由であるが、これ

は波形整形器を通していないことに由来している。回路雑音の多くを占めるのは周波数の低い成分 であり、周波数が高くなるにつれて、その値は小さくなっている。微分回路はハイパスフィルター としても動作するため、周波数の高い成分のみを通す。したがって、波形整形器によって回路雑音 の低い周波数成分がカットされ、結果として Low Gain Mode のほうが S/N が高くなっている。

5.6 オフセットの検証

信号は様々な条件でオフセット (図 5.1 を参照) を持つが、その値が大きい場合例えば比較器で の閾値の設定に大きな影響を与える。したがって、ある条件でのオフセットの値を見積もり、また 5.4.3 項で示したようなオフセット調整回路が持つ調整可能な範囲が充分であるかどうか検証する。

図 5.23 オフセット調整と閾値電圧 [34]

5.6.1 オフセットの要因

オフセットの要因としては以下のようなものが考えられる。

- 1. プロセス変動
- 2. 温度変動
- 3. ASIC の電源電圧値の変動
- 4. ASIC のパラメータの変動
- 5. 放射線損傷

実際の回路では以上5つのような要因が上げられるが、ASIC 電源電圧値の変動や放射線損傷に ついては、回路シミュレーションでは再現することができない。また、ASIC のパラメータの変動 については、これまでのシミュレーションにおいてある程度把握できているため、この項ではプロ セス変動と温度変動でのオフセットについて述べる。

プロセス変動とは nMOS と pMOS の特性のばらつきのことを指す。半導体は個体それぞれの 応答速度にばらつきがあるため、その影響によってオフセットが生じる。T-Spice シミュレーショ ンではこの応答のばらつきを、S(Slow)、T(Typical)、F(Fast) の3つの MOS モデルとして考え る。この時、プロセス変動にはコーナーパラメータと呼ばれるものが存在する。コーナーパラメー タの概要図を図 5.24 に示す。

図 5.24 プロセス変動とコーナーパラメータ

プロセス変動は、nMOS と pMOS の組み合わせで全部で 9 種類のパラメータが存在するが、中 でもコーナーパラメータと呼ばれる図 5.24 の四つ角に位置するような極端な特性の組み合わせを ここでは考える。 コーナーパラメータは一般に、オフセットが大きくなると考えられるワースト ケースである。

なお、ここまで示してきた全てのシミュレーションは、(nMOS, pMOS = T, T)、温度 25 ℃の 設定での結果である。

5.6.2 オフセットのシミュレーション結果

まずはプロセス変動によるオフセットの結果である。図 5.25 は (T, T) を基準としたときの各 コーナーパラメータにおけるオフセットの値を表している。横軸がパラメータで、縦軸がオフセッ ト (単位 [mV]) である。

検証の結果、プラス方向の最大変位が Fast/Slow の場合で +1.67 mV で、マイナス方向最大変 位が Slow/Fast の場合で –0.79 mV になった。プロセス変動ではほとんどオフセットが変わらな いことが確認できた。また一般に、nMOS と pMOS の反応の差に大きな違いがあるほどオフセッ トは大きくなることが知られているため、この結果には矛盾が無いように思われる。

次に温度変動によるオフセットの結果を示す。図 5.26 は、+25 ℃を基準にした時における、-60 ℃から +60 ℃まで (10 ℃刻み) のオフセットを表している。

温度が上がっていくにつれてオフセットの値が下がっていることが確認できる。その値は、−60 ℃の時 +3.07 mV、+60 ℃の時 −3.55 mV という結果になった。温度変化でもオフセット変動は 信号波高値などと比べて大きな値を持たないことから、その影響はほとんど無視できる。

したがって、TF01A64における支配的なオフセット要因はパラメータの変化によるものであり、

図 5.26 温度変動によるオフセット

5.7 ダブルパルスセパレーションの検証

5.7.1 パルスセパレーションの概要

ダブルパルスセパレーションとは、検出器のある一つのチャンネルからの2つの連続した信号を きちんと区別できるかどうかの能力を指していて、特に高いダークカウントレートを持つ MPPC 用の ASIC としては、この能力が非常に重要になる。図 5.27 にダブルパルスセパレーションの概 念図を示す。

図 5.27 ダブルパルスセパレーションの概要図。左図は区別できている様子、右図は区別できていない様子を表している。また、*V*th は閾値電圧を表す。

図 5.27 のアナログ信号は荷電粒子が入射した真の信号、もしくはダークパルスを表している。 図 5.27 の左図のような場合には、2 つの検出器信号は十分な時間離れているため、デジタル信号 つまり ASIC の出力信号はしっかりと 2 つ出力されている。しかしながら、右図のように 2 つの 信号の距離が一定距離よりも近い場合、デジタル信号は一つ目の信号のタイミングで 1 つのみ出力 される。この、デジタル信号が 2 つ出力されるか、1 つ出力されるかという事が、信号を区別でき る、区別できないを表している。

一つ目の信号がダークパルスで、二つ目の信号が真の信号だと仮定した場合、信号が区別できな い状況であればダークパルスのタイミングでデジタル信号が出力されることになるため、真の信号 の情報は失われてしまう。ARICH の粒子識別で重要なのはリングイメージを得るための1光子検 出であるから、このような状況は1つでも減らす事が望ましい。ただし、今述べた2つの信号を逆 に仮定した場合にはこの場限りでない。当然、どちらもダークパルスである場合にも同様である。

5.7.2 シミュレーション結果

この項では上記のパルスセパレーションについてのシミュレーション結果を示す。なお、シミュ レーションはすべて Low Gain Mode で行った結果である。

まずは状況設定と、変数の定義などについて述べる。これまで Low Gain Mode で用いてきた、 入力電荷 4.0×10⁶ fC、端子間容量 320 pF、信号立下り時定数 100 ns の信号を 2 発連続で入力す る。その際、2 つの信号の入力間隔を徐々に近づけていき、デジタル信号が 2 つ出力される限界間 隔を見積もる。1 つ目の信号はダークパルス、2 つ目の信号は真の信号を模擬することにする。ま た図 5.28 に示すように、閾値電圧は比較器前のアナログ信号の波高値の 80% と 50% に設定し、 それぞれで検証を行う。

図 5.28 閾値電圧の設定値

ダブルパルスセパレーションを評価するための変数としては、「Analog Interval」と「Digital Interval」という2つを定義する。説明図を図 5.29 及び図 5.30 に示す。

図 5.29 Analog Interval の定義

図 5.30 Digital Interval の定義

「Analog Interval」は1つ目の信号のリーディングエッジ^{*9}から、2つ目の信号のリーディング エッジの時間の間隔を表す。信号波高のピークの時間ではなく、立ち上がり始めの時間のことを 指しているということに注意してほしい。また、「Digital Interval」は一つ目のデジタル信号のト レーリングエッジから、2つ目の信号のリーディングエッジの間隔を表す。Analog Interval を狭 めるにつれて、Digital Interval も狭まっていくので、つまりダブルパルスセパレーションの限界 値は Digital Interval がゼロになる時である。

さて、ここからはシミュレーション結果に移る。まずば増幅器 1 における増幅率が最小 (Step 0) の時における結果で、図 5.31 にグラフを示す。横軸が Analog Interval で、縦軸が Digital Interval を表す。単位はいずれも [ns] である。また、赤いプロットは閾値電圧を波高の 80% で設定した場 合で、青いプロットは 50% の場合である。

具体的な値を述べておくと、Step 0 における信号波高は 34.59 mV であるので、閾値電圧は信 号のベースラインから 80% で 27.67 mV、50% で 17.30 mV で設定している。*x* 軸がの値が小さ い部分では *y* 軸の値が急激に下がっているが、変数の定義上線形なグラフにはならない。そして検 証の結果、ダブルパルスセパレーションの能力は閾値電圧 80% で 39 ns、50% で 48 ns という結 果になった。

以下、増幅器 1 における増幅率の設定が Step 1、Step 2、Step3 における結果で、図 5.32、図 5.33、図 5.34 にそれぞれのグラフを示す。軸や閾値電圧については先ほどと同様である。

上記の増幅率最小を含む4パターンすべての結果を表5.5にまとめた。増幅率が高くなるにつれて、ダブルパルスセパレーション能力は悪くなることが分かる。

さて最後に、このダブルパルスセパレーションの能力が ARICH の粒子識別へどのように影響す るのかを述べる。繰り返しになるが、信号やダークパルスがきた直後は Dead Time になるので、 この間に本物の信号があった場合その信号は逃してしまう。1 チャンネルあたりのダークカウント レートを N[Hz]、ダブルパルスセパレーションの能力が a[s] と定義すると、Dead Time の割合 D

^{*&}lt;sup>9</sup> 波形の最初のエッジがリーディングエッジで、最後のエッジがトレーリングエッジ。それぞれが立ち上がりと立ち下 がりのどちらにもなりうる。

図 5.31 増幅率 Step 0 のパルスセパレーション結果。信号波高値は 34.59mV。

図 5.32 増幅率 Step 1 のパルスセパレーション結果。信号波高値は 56.03 mV

は、

$$D = N \times a \tag{5.7}$$

と表される。したがって、ダークカウントレートが 1 MHz、ダブルパルスセパレーションが前項 で示した限界値程度である 40 ns を仮定すると、Dead Time は *D* = 0.04 となり、つまり単純に考 えると 4% 程度の信号が失われることになる。ARICH では現状、1 イベントあたり 10~20 個程 度しか光子を検出できていないため、4% の信号が失われるのは大きな問題である。ただ、HAPD

図 5.33 増幅率 Step 2 のパルスセパレーション結果。信号波高値は 70.39 mV。

図 5.34 増幅率 Step 3 のパルスセパレーション結果。信号波高値は 80.87 mV。

と比べ MPPC の PDE は 2 倍以上あるので、単純計算で検出光子数が 2 倍以上に増えると考える と、4% が失なわれることは十分許容できる。しかしながら、あくまでこれは PDE のみを考えた 結果であり、例えば放射線損傷等によりダークカウントレートが増えることや、アフターパルス*¹⁰ が存在することの影響が含まれていないため、先に述べた結果よりも悪化する可能性もあるが、一 方で検出位置精度が向上することも考慮されていないため、この辺りも考慮したシミュレーション

^{*&}lt;sup>10</sup> MPPC による光子検出時に、出力パルスとは別に遅れて出力される信号。

Step	閾値電圧	ダブルパルスセパレーション
Step 0	80%	39 ns
	50%	48 ns
Step 1	80%	48 ns
	50%	60 ns
Step 2	80%	55 ns
	50%	70 ns
Step 3	80%	61 ns
	50%	80 ns

表 5.5 ダブルパルスセパレーションの限界値

を行いながら、この結果を ASIC の回路にも落とし込んで、設計条件を絞り込んでいくことが今後の課題となるであろう。

5.8 レジスタ構成

レジスタとは、2 進数の数値を記憶させ、その数値を読み出せるようにした回路のことである。 もう少しだけ詳しく述べると、レジスタにはフリップフロップ回路というものが用いられていて、 フリップフロップの個数と同じビット数の2進数の数値を記憶でいるようになっている。表 5.1 に 示したように、TF01A64 は全部で 69 個のレジスタが搭載されている。このうち、読み出しチャン ネルごとに設けられた LCR が 64 個、制御レジスタとして回路全体を制御する CCR が 1 個、ま た回路全体で共通に用いられるアナログ電圧を生成する DAC レジスタ^{*11}が 4 個ある。図 5.35 に レジスタ構成の概要図を示す。

図に示すように、順番としては、CCR-DAC(0)-DAC(1)-DAC(2)-DAC(3)-LCR(0)-LCR(2)-……-LCR(62)-LCR(63)のように構成されている。レジスタはそれぞれ別々の役割を持っており、 CCR や DAC レジスタは8ビット、LCR は 18ビットのパラメータ設定が可能である。LCR につ いては信号読み出し用のレジスタなので、レジスタ自体は 64 個すべて同様のものである。レジス タが同様ということはつまり、設定可能なパラメータは共通であるが、パラメータ設定はチャンネ ルそれぞれ個別で行う必要があることに注意が必要である。また、これまで基本回路構成等で示し てきた、増幅率やオフセット調整などの設定はこの LCR のパラメータに該当する。以下に、各レ ジスタにどのようなパラメータがあるか簡単に述べるが、パラメータの詳細、あるいは設定方法等 は付録 A の Operation Manual に載せてあるので、そちらを参照してほしい。CCR、DAC レジ スタ、LCR のパラメータの説明をそれぞれ、表 5.6、表 5.7、表 5.8 に示す。

^{*&}lt;sup>11</sup> 回路全体で共通に用いられることは同様であるが、パラメータ設定と電圧生成という機能の違いから CCR とは区別 している。

図 5.35 レジスタ構成

表 5.6 CCR の設定パラメータ

ビット番号	パラメータ説明
0,1	アナログ信号のモニター位置決定
2	High/Low Gain Mode の切り替え
3,4	バイアス電流の調整
5-7	PZC における抵抗値調整

表 5.7 DAC レジスタの設定パラメータ

DAC 番号	パラメータ説明
0	トリガー生成のための閾値電圧を生成
1	テストパルスの振幅用の電圧を生成
2	比較器出力のドライブ機能を制御する信号を生成
3	MPPC の増幅率を制御するための基準電圧を生成

ビット番号	パラメータ説明
0-7	オフセット調整
8-11	漏れ電流回路のバイアス電流調整
$12,\!13$	ゲイン調整
14	(空き)
15	比較器出力の選択 (閾値型 or OneShot 型)
16	テストパルスの入力の無効化
17	比較器の動作無効化

表 5.8 LCR の設定パラメータ

ここで一つだけ言及しておきたいことは、表 5.7 に示したように、TF01A64 にはテストパルス を発生させる機能が備わっているということである。テストパルスは MPPC 等のアナログ入力を 供給せずとも、そのタイミングのみを与えてあげるだけで、TF01A64 の回路内部で疑似信号を発 生させることができる。これは、各レジスタへのパラメータの書き込みを確かめることが出来るだ けでなく、増幅器やオフセット調整回路、比較器などがきちんと機能しているかどうかを簡易的に 確認できるという点で、非常に有用である。また、表 5.8 でテストパルスの入力の無効化があるの は、テストパルス発生のためのタイミング信号を与えると 64 チャンネル分すべての回路でテスト パルスが発生するからである。次章では、このテストパルスを用いた ASIC の動作確認を行ったこ とについて述べる。

第6章

TF01A64 用評価ボードの製作

MPPC 用 ASIC として制作した TF01A64 は完成したが、これが実用に耐えうるのかを検証す る必要がある。この章では、TF01A64 用の評価ボードの製作とテストパルスを用いた動作確認に ついて述べる。

6.1 ASIC 評価ボードの設計

5 章で述べてきた MPPC 用 ASIC、TF01A64 は図 6.1 に示すようにパッケージ済みで完成し た。作成した個数は全部で 6 個である。5 章で述べたように TF01A64 のピン数は全部で 202 ピン 必要であるが、現状このチップ自体がプロトタイプであるため、パッケージ化の都合上 160 ピンタ イプのものが使用されている。使われていないピンは、24 個のアナログ入力ピンと、これに対応 した 24 個のデジタル出力ピンになっている。つまり、全部で 64 チャンネルある信号読み出しチャ ンネルのうち、24 チャンネル分は接続されておらず、40 チャンネル分が使用できる。

図 6.1 パッケージ済み TF01A64

このようなパッケージされた ASIC は、これだけでは何の意味も持たず、例えばアナログ信号や パラメータ設定のためのパターン信号を送ったり、駆動用の電源供給などを行う必要がある。した がって、この TF01A64 の性能を評価するための TF01A64 用テストボードを作成した。TF01A64 とその評価ボードの製作スケジュールを表 6.1 まとめた。

表 6.1 TF01A64 及びその評価ボード開発のタイムライン

日付	内容
2019/12/13	デザインレイアウト依頼 (デジアンテクノロジー)
2020/8/19	サブミット (シリコンソーシアムから TSMC Cyber Shuttle*1経由)
2020/10/3	パッケージ済み TF01A64 納品
2020/10/9	TF01A64 用評価ボード作成依頼 (ジー・エヌ・ディー)
2020/11/13	評価ボード納品

図 6.2 に示すのが、製作した評価ボードである。製作はジー・エヌ・ディー (有) に依頼した。 ジー・エヌ・ディー (有) は、SA03 用の評価ボードや、後述の PTS モジュール等の製作も依頼し た会社である。評価ボードの中央に、ねじ止めによってパッケージ済みの TF01A64 を取り付けら れるようになっている (図 6.3)。

図 6.2 TF01A64 用評価ボードの外観

以下、簡単に評価ボードの各種機能や回路等について述べる。図 6.4 に評価ボード設計の説明図 を示す。図 6.2 も合わせて参照してほしい。説明のため、各部品やパーツに J0 から J7 までの番号 を付けた。

^{*1} ひとつの半導体素子製造に複数の顧客がそれぞれの回路を構築して、コストの分担を行なう仕組み

図 6.3 評価ボードへ TF01A64 を取り付けた様子。左がねじ止め前で、右がねじ止め後。

図 6.4 評価ボード設計の説明図

ボード中央の J0 は、TF01A64 装填のための QFP(Quad Flat Package)^{*1}用ソケット (IC149-160-023-B5) である。上で述べたように、TF01A64 のパッケージは 160 ピンになっていて、その ためソケットもこれに合わせて 160 ピンのものが使用されている。

ボード左側の J1 は 50 ピンのフラットケーブルコネクタ (FAP-50-07#2) で、2 つ同様の物が設置されている。このコネクタは MPPC を接続するためのコネクタである。

ボード右側の J2 は 34 ピンのフラットケーブルコネクタである。このコネクタには FPGA が接 続され、TF01A64 のパラメータ設定のための信号を送ったり、また TF01A64 内部でデジタル化 された信号を受信し、処理を行ったりする。

J3 は、10 ピンと 6 ピンのストレートタイプのピンソケット (851-87-010-10-001101, 851-87-006-10-001101) である。このソケットには、MPPC 用のための駆動電源 (C11204-01)[46] が装着 される。図 6.5 に MPPC 用駆動電源の図を示す。

図 6.5 MPPC 用電源 C11204-01

J4 は、9 ピンの RS232^{*2}ケーブルが接続される Dsub コネクタ (A-DS 09 A/KG-T2) である。 これらのコネクタとケーブルは評価ボードと PC を繋ぐためのもので、PC を用いて上記で示した MPPC 用駆動電源の出力電圧を制御する。

J5 は 4 つの LEMO コネクタである。TF01A64 には、DAC による生成電圧やアナログ信号 やデジタル信号をモニタするピンが存在するため、これらをオシロスコープなどで見るために、 LEMO コネクタが搭載されている。

J6 は、電圧を変更するためのレベル変換のチップ (SN74LVC16T245) である。TF01A64 内部 で使用されるデジタル信号の電圧は 1.65 V であるが、FPGA で使用される信号は 3.3 V であるた め、TF01A64 からの信号を 3.3 V へ変換するためのものである。

J7 は TF01A64 への電源供給のためのアナログ電源 (+1.65 V/0 V/-1.65 V) やデジタル電源 (+3.3 V, +1.65 V/0 V/-1.65 V) の端子や、J3 で述べた MPPC 用電源を駆動するための電源 (+5.0 V) の端子である。

その他、スペーサーを取り付けるための通し穴や、デジタルマルチメーター等で評価ボード内の

^{*1} 半導体のパッケージの一種

^{*&}lt;sup>2</sup> シリアル 2 進化データ交換を使ったデータ端末装置 (DTE) とデータ通信装置 (DCE) 間のインターフェース

様々な場所の電圧を見るためのテストピンが搭載されている。

6.2 テストパルスを用いた動作確認

TF01A64 には、テストパルスの生成機能が備わっている。この節では、テストパルスを用いた TF01A64 及びその評価ボードの動作確認を行った結果について述べる。

6.2.1 実験セットアップ

図 6.6 はテストパルスによる動作確認の実験セットアップである。信号としてはテストパルスの みを用いているため、MPPC を始めとした光検出器は使用していない。

図 6.6 テストパルスを用いた動作確認のセットアップ

PTS は VME で動作するモジュールで、Belle 実験のトリガー用ボードとして開発された他、 HAPD 用 ASIC の信号読み出しのテスト等にも利用されたものである [47]。図 6.7 に PTS モ ジュールの外観を示す。この PTS モジュールには XILINX 製の FPGA が載っている他、6 つの LEMO コネクタと、4 つの 34 ピンフラットケーブルコネクタが搭載されている。フラットケーブ ルコネクタは 34 ピンのうち 18 ピンはグラウンド接続なので、実質使用できるピンは 16 ピンであ る。今回の TF01A64 の評価にもこの PTS モジュールを用いていて、搭載されている FPGA の ソフトやファームウェアを修正することで使用した。役割としては、各レジスタへのパラメータの 書き込みや読み出し、また後述のファンクションジェネレーターをトリガーとした、テストパルス 発生のための信号出力などである。

ファンクションジェネレータは、テストパルスのタイミングを決定する役割を持っている。ファ ンクションジェネレータから PTS モジュールへ NIM レベル (-0.8 V) の任意の信号幅をもつ信号

図 6.7 PTS モジュール

を入力することで、PTS モジュールから 10 μs の 3.3 V 矩形波が出力されるように設定している。 この矩形波の立ち上がりのタイミングで、TF01A64 はテストパルスを発生させる。なお、立ち下 がりの部分でも立ち上がりの時と極性が逆のパルスが発生してしまうため、矩形波の信号幅はテス トパルスの信号幅に対して十分長く取っている。

オシロスコープは、上記のように TF01A64 内部の DAC による生成電圧やアナログ信号やデジ タル信号を見るためのものである。ここでは、テストパルスとそれをデジタル化した信号、また閾 値電圧を見ている。

動作確認の項目は以下の4つである。

1. 増幅器1の4通りの増幅率調整

- 2. オフセット調整
- 3. 閾値電圧の調整
- 4. 比較器によるデジタル化

以上をテストパルスを用いて確認することとする。

6.2.2 実験結果

この項ではテストパルスを用いた動作確認の実験結果を示す。なお、実験結果はすべて Low Gain Mode での結果である。

増幅率調整

まずは増幅率調整の動作確認で、図 6.8、図 6.9、図 6.10、図 6.11 にその結果を示す。

図 6.8 増幅器 Step 0 におけるアナログ信号の モニター波形

図 6.10 増幅器 Step 2 におけるアナログ信号 のモニター波形

図 6.9 増幅器 Step 1 におけるアナログ信号 のモニター波形

図 6.11 増幅器 Step 3 におけるアナログ信号 のモニター波形

Step 0 は増幅器 1 の増幅率が最小、Step 3 は増幅率が最大を示している。なおモニター位置は、 増幅器 2 の後である。図に示したように、4 通りの増幅率に設定できることが確認できた。ただ し、ベースラインの位置も 4 パターンで少しずつずれていることも確認できる。

オフセット調整

次にオフセット調整回路の動作確認である。増幅率の設定は最大 (Step 3) である。まずはオフ セット調整なしの場合の波形を図 6.12 に示す。

図 6.12 オフセット調整なしの波形図

以下に示す波形においては、この波形を基準としたときのベースラインのズレをオフセットとする。また、ここでは例として全部で4パターンのオフセット調整後の波形を示す。図 6.13 から図 6.16 がその結果である。

図 6.13 オフセット調整 Step 8 におけるアナ ログ信号のモニター波形 (+10 mV)

Step のうち、0 から 127 はプラス方向、128 から 255 はマイナス方向のオフセット調整にあて られているので、Step 136 は言うなればマイナス方向の Step 8 に対応する。また、横に並べた 2 つの波形は、プラス方向とマイナス方向のオフセットの絶対値が同じになるようなパターンとなっ ている。以上 4 つのオフセット調整のどのパターンでもきちんと調整できていること、またプラ

図 6.14 オフセット調整 Step 136 におけるア ナログ信号のモニター波形 (-10 mV)

図 6.15 オフセット調整 Step 15 におけるアナ ログ信号のモニター波形 (+20 mV)

図 6.16 オフセット調整 Step 143 におけるア ナログ信号のモニター波形 (-20 mV)

ス方向とマイナス方向で大きな違いがないことが確認できた。ただし図 6.15 と図 6.16 を見ると、 Step 15 と Step 143 においてオフセット調整の絶対値は約 20 mV であったが、これは 5 章で示し た T-Spice シミュレーションの結果 (Step 15: +32 mV、Step 143: -38 mV) とは異なって、小 さく設定された。

閾値電圧調整

5.8 節で述べたように、TF01A64 は DAC レジスタの設定により閾値電圧の設定が可能である。 オフセット調整回路と同様に、DAC レジスタに割り当てられた 8 ビットのうち、最上位ビットが 符号の決定に当てられていて、残りの 7 ビットが絶対値を決める。つまり 255 通りの閾値電圧の 設定が可能である。値電圧調整についても先ほどのように 4 パターンの調整を示すことにする。図 6.17、図 6.18、図 6.19、図 6.20 がその結果である。

図 6.17 Step 63 における閾値電圧

図 6.18 Step 191 における閾値電圧

閾値電圧についても、プラス方向とマイナス方向で大きな違いがないことも含め、きちんと設定

図 6.19 Step 127 における閾値電圧

図 6.20 Step 255 における閾値電圧

できることが確認できた。また、閾値電圧については評価ボード上にテストピンが用意されている ため、これらの値を測定することができる。図 6.21 に上記の 4 パターンを含めた 10 パターンに ついて、その閾値電圧グラフにした。また、その時のテストピンから読み取った値を表 6.2 にまと めた。

図 6.21 閾値電圧の 10 通りの設定値のグラフ

Step は閾値設定のパターンを表しており、Step 0 と Step 128 がそれぞれ +0 mV と -0 mV の 閾値電圧設定に対応している。

比較器によるデジタル化

最後に、比較器によるデジタル化である。閾値電圧は約 –30 mV で設定している。デジタル信 号のモニターは、回路の都合上極性が反転していることに注意してほしい。測定の結果を 6.22 に 示す。

水色の波形がテストパルスを表していて、紫色の波形がデジタル化した信号を表している。な

Step	•	閾値電圧 [mV]	
Step 1	15	34.7	
Step 3	31	71.4	
Step 6	53	143.7	
Step 1	27	284.6	
Step 1	43	-34.7	
Step 1	59	-72.3	
Step 1	91	-146.0	
Step 2	55	-289.0	
	R Ready	M Pos: 76.00ns	SA
			<i>F</i> :

表 6.2 閾値電圧の設定値

図 6.22 テストパルス (水色) とそのデジタル化後の信号 (紫)。デジタル信号の波高は 1.65 V。

お、増幅率の設定は最大 (Step 3) で、オフセット調整はなし (Step 0) である。これもモニター信 号であることの都合上、デジタル信号がかなりなまっているように見えるが、しっかりと電圧値 +1.65 V で出力されていることは確認できる。

第7章

まとめと今後

Belle II 実験は重心系エネルギー 10.58 GeV の電子・陽電子衝突型加速器実験で、B 中間子や *τ* レプトンなどの崩壊を観測することを通して、標準模型を超える新物理現象を探索している。

電子・陽電子ビームの衝突点を囲むように設置されている Belle II 測定器は、役割によって最適 な動作原理の装置を組合わせた複合型検出器であり、各検出器で測定したデータを組み合わせる ことで崩壊過程の精密測定を行っている。Belle II 測定器の前方エンドキャップ部に位置している ARICH 検出器は、主に荷電 *K*/π 中間子の識別という役割を担っており、輻射体としてシリカエ アロゲル、光検出器として HAPD が用いられたリングイメージ型チェレンコフ検出器である。

現状、HAPD は ARICH 用の光検出器として十分な性能を発揮しているものの、今後 10 年間に 及ぶ実験期間において想定外の故障などが発生する可能性がある。その代替候補として、MPPC の使用が検討されており、その特性を理解すると共に、様々な特性の違いから信号読み出し回路に ついても新たなシステムの開発が必要になった。

本研究では、信号読み出し回路のなかでも光検出器からのアナログ信号のデジタル化を担当す る ASIC を開発した。ARICH 検出器のための MPPC 用 ASIC のプロトタイプとして開発された TF01A64 は、全部で 64 チャンネルの信号読み出しが可能であり、主な回路構成として増幅器-波 形整形器-増幅器-オフセット調整-比較器を持つ。これら各回路の基本性能や回路雑音などの見積も りの他、高いダークカウントレートを持つ MPPC を用いる上で重要な要素であるダブルパルスセ パレーションの検証を、T-Spice と呼ばれる回路シミュレーターを用いて検証した。ダブルパルス セパレーション能力は、限界値で 39 ns であった。

MPPC 用 ASIC として開発した TF01A64 は完成したが、これが実用に耐えうるかどうか検証 する必要がある。これを確かめるため、TF01A64 性能評価のための評価ボードも作成した。本研 究では、TF01A64 の機能として搭載されているテストパルスを用いて、TF01A64 及び評価ボー ドの動作確認を行った。確認項目としては、4 通りの増幅率、オフセット調整機能、閾値電圧調整 機能、比較器によるデジタル化である。以上 4 つの項目を、TF01A64 のモニターピンを通して確 認し、想定通り動作していることを確かめることができた。

今後はテストパルスではなく、実際に MPPC を用いて信号読み出しを行うとともに、デジタル 化した信号を FPGA で処理するシステムを構築することがまず必要となる。特に、多チャンネル の同時読み出しと、実機でのダブルパルスセパレーション能力の検証は重要な測定項目である。また、MPPCの特性の理解を進めたうえで、放射線耐性や本研究のダブルパルスセパレーションの 結果もあわせて、今後の回路設計に落とし込んでいく事が課題となる。

謝辞

本研究を進めるにあたり、大変多くの方々に支えていただきました。ここに深く感謝の意を表し ます。

まず、角野秀一教授、汲田哲郎助教授、そして今年度前期まで特任教授として着任なさっており ました住吉孝行先生に感謝を申し上げます。特に角野先生には、日々の研究の助言や学会等での発 表機会を頂いたり、スライドや英語の添削まで本当にお世話になりました。汲田先生や住吉先生に も、研究やスライド作成についてアドバイスや有意義なコメントをたくさんいただきました。3人 の先生方の本当に熱心なご指導ご鞭撻により、本論文を書き上げることができました。重ねて感謝 申し上げます。

また、浜津良輔客員准教授、千葉雅美客員助教授、今野智之さん、岩田修一さんにもお礼を申し あげたいと思います。浜津先生と千葉先生には日ごろの研究生活において、今野さんと岩田さんに は ARICH での作業、会議など様々な場面でご指導頂きました。

それから、JAXA の池田博一先生、KEK の西田昌平先生にも大変お世話になりました。本研究 があるのは、池田先生の強力なお力添えによるものであり、研究の指針を頂いただけでなく、アナ ログ回路についての幅広い知識をご教授頂きました。西田先生には、ARICH グループでの活動を 中心に、たくさんの指導や助言を頂きました。本研究がより良いものになったのは西田先生のおか げです。誠にありがとうございました。

学生生活においては、たくさんの友人たちとの出会いに恵まれ、大きな刺激と笑いを提供しても らいました。同期の在原拓司くん、三宅響くんとは学部生のころから共に学び、研究室に所属して からも日ごろから研究やくだらない話をたくさんして、本当に楽しい生活を送ることができまし た。また、安藤くん、大島さん、朴くん、渡辺くん、岩城さん、片桐さん、本橋くんにも同じ研究 室のメンバーとして大変お世話になり、研究生活がより楽しいものになりました。本年度9月に博 士後期課程を修了なさいました米永匡伸さん (現東京理科大学石塚研究室 PD) にも、感謝を申し上 げたいと思います。同じ実験グループというけでなく、学生生活においても同じ研究室の頼れる先 輩として大変お世話になりました。さらに Belle II Japan Student の皆様にも B2GM や勉強会な どを通して、研究や KEK での生活をたくさん助けていただきました。とても全員の名前を挙げる ことはできませんが、特に東京大学の古井孝侑くんとは、測定を一緒に行ったり、お互いに協力し 切磋琢磨しながら研究を進めることができたと思っております。改めて感謝いたします。

カルディコーヒーファームならびに株式会社キャメル珈琲様にも感謝を申し上げないわけにはい

きません。豊かな研究生活を送るにあたり、貴社の多種にわたるコーヒーを愛飲させていただきま した。深くお礼申し上げます。

最後になりましたが、生活面、経済面、ありとあらゆる場面で私を支えてくれた両親へ、面と向 かっては言えませんがこの場を借りまして感謝を伝えさせていただきたいと思います。浪人生活、 大学そして大学院修士と自分の決めた道に対して、温かく見守り続けてくれて本当にありがとうご ざいました。

> 2021年1月8日 鶴藤昌人

付録 A

TF01A64 Operation Manual

TF01A64 は ARICH への使用が検討されている MPPC 用 ASIC として設計されたものであり、以下に挿入するスライドには TF01A64 に関する共通事項を記載した。

ASIC for MPPC TF01A64 Operation Manual

Tokyo Metropolitan University Masato Tsurufuji

Operation Manual

<u>はじめに</u>

TF01A64はARICHへの使用が検討されているMPPC用ASICとして設計されたものであり、この スライドはTF01A64に関する共通事項を記載してある。

対象のMPPCは以下である。 ①S13361-3075AE-08 <HAMAMATSU> https://www.hamamatsu.com/resources/pdf/ssd/s13361-3050 series kapd1054e.pdf

②S14160 Series (-1315PS) <HAMAMATSU> https://www.hamamatsu.com/resources/pdf/ssd/s14160-1310ps_etc_kapd1070e.pdf

詳細は後述するが、S13361-3075AE-08では「Low Gain Mode」を、S14160-1315PSでは 「High Gain Mode」を用いる。 ここでいうHigh/LowはASICにおけるゲインを表しているので注意したい。

なお、ASICの製造プロセスはTSMC (Taiwan Semiconductor Manufacturing Company、 台灣積體電路製造)の 0.35µm Mixed Modeを用いている

電気的仕様

アナログ電源 VDD: +1.65V Gnd: 0V VSS: -1.65V

デジタル電源 VDD1:+1.65V DGND:0V VSS1:-1.65V

I/Oインターフェースについては後述

Operation Manual

レジスタ構成①

チップ全体で共通に用いられる5種類のDACレジスタと、64の信号チャンネルごとに設けられた LCR (Local Control Resister)がある。

具体的には、

DAC0>>DAC1>> ・・・ >>DAC4>>LCR(0)>> ・・・ >>LCR(62)>>LCR(63) のように構成されている。

レジスタ構成2

DAC0は、CCR(Central Control Resister)として用いる

DAC1は、VTH1(トリガー生成のための閾値電圧)を生成

DAC2は、TPDC(テストパルス用の振幅)を生成

DAC3は、VRDRIVE(コンパレーター出力のドライブ機能を制御する信号)を生成

DAC4は、VREF(AIN部の電圧を経由してMPPCのゲインを制御するための基準電圧)を生成

Operation Manual

レジスタ構成③

DACは8ビット、LCRは18ビット用意されていることに注意したい

レジスタ選択方式

関連する信号は、SELIN、SELCK、SELOUTである

Ex.

SELCK5個でLCR(0)が選択 SELCK69個でSELOUTが出力

Operation Manual

7

<u>レジスタ書き込み方式</u>

関連する信号は、 SELIN、SELCK、WR、WCK、DINである

-C. N.			
		× × × × ×	

レジスタ読み出し方式

関連する信号は、 SELIN、SELCK、WCK、DOUTである

Operation Manual

CCRの内訳 (CCR=DAC(0))

ビット	パラメータ名	説明
Q[0:1]	AMON	アナログ信号のモニター
Q2	Mode	High/Low Gain Modeの切り替え
Q[3:4]	lBias	基準電流(バイアス電流)の調整
Q[5:7]	PZC	PZC回路における抵抗値の調整

<u>アナログ信号のモニター</u>

AMON

Q[0:1]

アナログ信号のモニター

MON0 -- >> BUFOUT MON1 -- >> AOUT MON2 -- >> COMPIN MON3 -- >> 温度計(pnp トランジスタのベース・ゲート間の電圧) -- >> ~0.7 V, ~-2mV/degree

Operation Manual

11

<u>DACの内訳</u>

<u>LCRの内訳</u>

ビット	パラメータ名	説明
D[0:7]	Offset	オフセット調整(D7が符号、D[0:6]が絶対値)
D[8:11]	IBIAS	漏れ電流回路のバイアス電流調整
D[12:13]	Gain	ゲイン調整
(D14)	NC	
D15	COMP	DIN出力の信号幅の選択(1設定で20ns出力)
D16	TPENB	テストパルスの入力の無効化
D17	KILLB	コンパレーターの動作の無効化

Operation Manual

13

DOUT

<u>基準電流の発生回路</u>

基準電圧発生モニター

VH*とTRIMVH4については外付けの 0.1uFの容量をVDDに向かって、VL*につ いてはVSSに向かって接続

その他(VM*, DAC出力電圧)については、 特段の理由がないのでGndに接続

Operation Manual

入出力論理レベルは、0 V (L), 1.65 V (H)である。 ASICの内部では、-1.65 (L), +1.65 V (H) となっている。(電気的仕様参照) 15

<u>典型的波形</u>

Low Gain Mode(MPPC増幅率: 4.0E+6) CCR: Q2のデフォルトLowに対応している

RF4はすべてlowに設定(増幅率最小)

入力電荷:640fC 減衰時定数:100ns 端子間容量:320pF

PZCはこれらのアンダーシュートを 調整することが出来る

Operation Manual

<u>典型的波形</u>

High Gain Mode(MPPC増幅率: 3.6E+5) CCR: Q2のHighに対応している

RF4はすべてlowに設定(増幅率最小)

入力電荷:64fC 減衰時定数:9ns 端子間容量:100pF 17

付録 B

T-Spice Analysis

はじめに

ネットリストの記述は Ω(オーム) や F(ファラト) といった単位を省略することができる。もち ろん記述しても良い。ただし、スケールファクタについては記述が可能で、

- 10⁹: G
- 10⁶: M
- 10³: k
- 10^{-3} : m
- 10^{-6} : u
- 10⁻⁹: n
- 10⁻¹²: p
- 10^{-15} : f

というように使用できる。

それから一行が長すぎるときは行の頭に「+」をつけることによって改行ができる。また、「*」 でその行、「/* */」で複数行にわたってコメントアウトができる。

プログラミング言語と異なり文の上から順番に読み込んで実行する訳ではないので、階層さえ間 違えなければ基本的に解析のコマンド等を何処に記述しても問題ない。

付録 B は T-Spice の使い方について書いたつもりであるが、別の SPICE シミュレーターでも共通のことが多くあるようなので、調べてみると有用な情報が得られるかもしれない。

ネットリスト

ネットリストは SPICE で解析する回路が表されたものであり、抵抗やコンデンサ、MOSFET、 制御記述などが記述されている。ファイルの拡張子は.sp である。

以下ではこれらの回路部品の書き方について述べる。

抵抗の書き方

Rxx N+ N- Val

(例) R1 N1 N2 1k → N1 端子と N2 端子の間に 1kΩ の抵抗 R1 を接続している

Rxx: 抵抗番号

N+: 接続端子1

N-: 接続端子 2

Val: 抵抗值 (単位:Ω)

コンデンサの書き方

Cxx N + N - Val

(例) C1 N1 N2 2p → N1 端子と N2 端子の間に 1pF のコンデンサ C1 を接続している

Cxx: コンデンサ番号

N+: 接続端子 1

N-: 接続端子 2

Val: 静電容量 (単位:F)

MOSFET の書き方

Mxx D G S B Ch L= Val W= Val M= Val
(例) M5 N12 N13 VDD VDD nch L=0.4u W=3u M=1
Mxx: MOSFET 番号
D: ドレイン端子
G: ゲート端子
S: ソース端子
B: バルク端子
Ch: モデル名
L=Val: ゲート長 (単位:m)
W=Val: ゲート幅 (単位:m)
M=Val: 定格

パルス電源の書き方

vxx N+ N- pulse(V1 V2 Tdelay Trise Tfall Ton Period)

(例) v10 N1 Gnd pulse(0 500m 500n 1n 1n 100u 400u)

vxx: 電源番号

N+: 接続端子1

N-: 接続端子 2

V1: 初期電圧 (単位:V)

V2: パルス電圧 (単位:V)

Tdelay: ディレイ時間 (単位:s)

Trise: 立ち上がり時間 (単位:s)

Tfall: 立ち下がり時間 (単位:s)

Ton: パルスオン時間 (単位:s)

Period: 1 周期の時間 (単位:s)

すべての記述方法を網羅したわけではないが、大体はこれらのパターンに当てはまるので、回路 図と合わせて見ればどのようなことが書かれているのかは分かると思う。

解析コマンド

ここでは、T-Spiceの解析コマンドについて解説していく。

.ac コマンド

これは交流解析を行うためのコマンドである。

- .ac 構文 —

. ac < OCT/DEC/LIN > < Nstep > < StartFreq > < EndFreq >

<LIN/OCT/DEC>:線形変化/2倍区間の対数変化/10倍区間の対数変化。

<Nstep>: 解析のステップ数。

<StartFreq>: 計測開始の周波数。(単位:Hz)

<EndFreq>: 計測終了の周波数。(単位:Hz)

- [例]
- .ac DEC 5 1K 1G

1kHz から 1GHz までを 5Hz 間隔で交流解析。

.tran コマンド

これは過渡解析を行うためのコマンドである。

- .tran 構文 ———— .tran <*Tstep*> <*Tstop*>

<*Tstep*>: 時間をスイープする間隔。(単位:s)

<*Tstop*>: 計測終了の時間。(単位:s)

[例] .tran 5n 1500n 1500n 秒まで 5n 秒間隔で過渡解析。 .param コマンド

定義した変数に値を代入できるコマンドである。

- .param 構文 ——

.param < Variable=val>

< Variable=val>: 定義した変数へ値を代入。

[例]

ネットリストに、 R1 N1 N2 1k という文があったとする。これは.param コマンドを用いて、 R1 N1 N2 resister .param resister=1k と書くことができる。

.step コマンド

定義した変数に複数の値を段階的に代入することができるコマンドである。.step を複数書いても 良いが、それだけ時間がかかることには注意したい。

.step 構文1 —

 $. {\tt step} < \!\! \textit{Variable} \!\! > < \!\! \textit{list} \!\! > < \!\! \textit{val} \!\! >$

<*Variable>*: 以前定義した変数。 <list>: リストの値に段階的に変更。 <*val*>: 値を代入。

[例1]

.step resister list 100 200 400 500 800

変数 resister に 100、200、400、500、800 の値を段階的に変化させて解析。

- .step 構文 2 —

.step <LIN/OCT/DEC> <Variable>

 $<\!\!StartVal\!\!><\!\!EndVal\!\!><\!\!StepVal\!\!>$

<LIN/OCT/DEC>:線形変化/2倍区間の対数変化/10倍区間の対数変化。

<Variable>:以前定義した変数。

<StartVal>: 初期值。

<EndVal>: 終了值。

<*Step Val*>: 間隔値、2 倍もしくは 10 倍の区間の分割数。

[例2]

.step DEC resister 1k $100\mathrm{k}$ 5

変数 resister を 1k から 100k まで、10 倍区間あたり 5 分割で変化させて解析。

.alter コマンド

.param や.step は数字のみを扱えたのに対し、.alter は素子名や端子名の変更を行うことができる。.alter が記述されていると、その行までを一旦読み込みシミュレーションを実行するという性質上、.alter に限っては文末にまとめて記述するのが良い。

Alter 構文 ——
 Alter <Name>
 Sentence>

<*Name>*: この alter 解析の名前。何でもよい。 <*Sentence>*: 文を記述。例を参照。

[例]

ネットリストに、

XDECODE_224_1 VDD VDD T0 T1 T2 T3 DECODE_224

という文があったとする。.alter コマンドを用いて文末に、

.alter 1

XDECODE_224_1 VDD VSS T0 T1 T2 T3 DECODE_224

. alter 2

XDECODE_224_1 VSS VDD T0 T1 T2 T3 DECODE_224

.alter 3

XDECODE_224_1 VSS VSS T0 T1 T2 T3 DECODE_224

と書けば接続端子を変えた、初期値を含め4パターンでシミュレーションを行うことができる。

.temp コマンド

これは解析における温度を変更するためのコマンドである。

- .temp 構文 —

.temp <temprature>

<temprature>: 温度を記述する。デフォルトは 25 ℃。複数書いて良い。(単位:℃)

[例]

.temp 0 10 20 30 40

0 °C、10 °C、20 °C、30 °C、40 °Cで解析を行う。

.print コマンド

これは解析結果となる波形などを出力するためのコマンドである。

- .print 構文 -

.print <ac/tran> <*Node>*

<ac/tran>: 解析コマンドに合わせる。 <*Node*>: 見たいノードの名前 (AOUT, COMPOUT など) を書く。複数書いて良い。

[例]

.print tran V(AOUT) V(COMPOUT)

AOUT と COMPOUT の波形を出力する。

.meas コマンド

これは波形の様々な値を直読するためのコマンドである。様々なパターンがある。

- .meas 構文 1 -

.meas <ac/tran/avg> <Variable> <max/min> <Node> <from A to B>

<ac/tran>: 解析コマンドに合わせる。

< Variable>: 変数名を定義する (自分で決める)。

<max/min/avg>, <from A to B>: A から B の間の最大/最小/平均を計算する。

<Node>: 見たいノードの名前

[例1]

meas tran AOUTmax max V(AOUT) from 0.7u to 0.8u

0.7u 秒から 0.8u 秒における AOUT の最大値を計算し、AOUTmax という名前で出力。

- .meas 構文 2 —

.meas $\langle ac/tran \rangle \langle Variable \rangle \langle find \rangle \langle Node \rangle \langle at C \rangle$

<ac/tran>: 解析コマンドに合わせる。 <*Variable*>: 変数名を定義する (自分で決める)。 <find>, <at *C*>: C の場所での値を計算する。 <*Node*>: 見たいノードの名前

[例2]

.meas ac AOUTval find V(AOUT) at 0.5G

0.5GHz における AOUT の値を計算し、AOUT val という名前で出力。

- .meas 構文 3 -

.meas < ac/tran> < Variable> < trig> < Node> < val=val> < rise/fall=num> < trag> < Node> < val=val> < rise/fall=num>

<ac/tran>: 解析コマンドに合わせる。 <trig, trag>: トリガーの始まりと終わりを表す。 <*Variable*>: 変数名を定義する (自分で決める)。 <*Node*>: 見たいノードの名前 <val=*val*>: トリガーを始めるまたは終わるときに参考にする値。 <rise/fall=*num*>: 何回目の立ち上がり/立ち下がりを参考にするかどうか。

[例3]

.meas tran Interval trig V(COMPOUT) val=0 fall=1 targ V(COMPOUT) val=0 rise=2

COMPOT の値が0になる1回目の立ち下がりから、COMPOUT の値が0になる2回目の立 ち上がりまでの時間を計算し、Interval という名前で出力。

- .meas 構文 4 -

.meas <ac/tran> <Variable> <param='Formula'>

<ac/tran>: 解析コマンドに合わせる。

< Variable>: 変数名を定義する (自分で決める)。

<param=Formula>: 四則演算の計算式を書く。.param や.meas で定義した変数も使える。

[例4]

.meas tran Height param='AOUTmax*0.8-0.5m'

AOUTmax×0.8-0.5m を計算し、Height という名前で出力。

- その他 —

.meas コマンドの末尾に OFF と書くと、計算値の出力を非表示にできる。複数の.meas コ マンドでの計算の後、最終的な結果だけ出力したいときなどに便利かもしれない。 .meas でなくて.measure でも実行できる。

参考文献

- G. Aad *et al.* (ATLAS Collaboration). "Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC". *Physics Letters B, Vol. 726, Issues 1-3*, pp. 88–119, Oct. 2013.
- [2] J.H. Christenson, J.W. Cronin, V.L. Fitch, R. Turlay. "Evidence for the 2π Decay of the K_2^0 Meson". *Physical Review Letters 13, 138*, pp. 138–140, Jul. 1964.
- [3] Makoto Kobayashi, Toshihide Maskawa. "CP-Violation in the Renormalizable Theory of Weak Interaction". Progress of Theoretical Physics 49, No. 2, pp. 652–657, Feb. 1973.
- [4] Nicola Cabibbo. "Unitary Symmetry and Leptonic Decays". Physical Review Letters 10, 531, Jun. 1963.
- [5] S. L. Glashow, J. Iliopoulos, L. Maiani. "Weak Interactions with Lepton-Hadron Symmetry". *Physical Review D 2, 1285*, Oct. 1970.
- [6] Lincoln Wolfenstein. "Parametrization of the Kobayashi-Maskawa Matrix". Physical Review Letters 51, 1945, Nov. 1983.
- [7] CKMfitter Group. "The global CKM fit in the large (ρ -bar, η -bar) plane". Preliminary results as of Summer 2019, Dec. 2019.
- [8] Ashton B. Carter, A. I. Sanda. "CP violation in B-meson decays". Physical Review D 23, 1567, Apr. 1981.
- [9] E. Kou et al. (Belle II Collaboration). "The Belle II Physics Book". BELLE2-PUB-PH-2018-001, Aug. 2018.
- [10] KEK. "世界の電子陽電子衝突型加速器とその瞬間ルミノシティのグラフ". KEK 公式ウェ ブページ,イメージアーカイブ,2018 年 3 月. https://www.kek.jp/ja/imagearchive/images/ 20180319-luminosity.png.
- [11] KEK. "SuperKEKB 加速器全体の模式図". KEK 公式ウェブページ, イメージアーカイブ, 2018年3月. https://www.kek.jp/ja/imagearchive/images/20180320_superkekb_001.png.
- [12] KEK. "ナノビームで目指す世界の頂点~スーパーBファクトリーへの挑戦~". KEK 公式 ウェブページ, News@KEK, 2010 年 3 月. https://www2.kek.jp/ja/newskek/2010/marapr/ photo/SuperKEKB1.gif.
- [13] 赤井和憲, 小磯晴代. "KEKB 加速器が切り開いたルミノシティ最前線". 加速器, Vol. 7, No.

3,2010年10月.

- [14] Yukiyoshi Ohnishi et al. (Belle II Collaboration). "Accelerator design at SuperKEKB". Progress of Theoretical and Experimental Physics, Vol. 2013, Issue 3, 03A011, Mar. 2013.
- [15] 飯嶋徹, 中山浩幸, 後田裕. "Belle II 実験", 2011 年 2 月. 高エネルギー物理学研究者会議, 高 エネルギーニュース, Vol. 29, No. 4.
- [16] Rey.Hori / KEK. "Overview of the Belle II detector". KEK 公式ウェブページ, イメージ アーカイブ, 2018年4月. https://www.kek.jp/ja/imagearchive/images/20180425_belle2_002. png.
- [17] I. Adachi et al. (Belle II Collaboration). "Detectors for extreme luminosity: Belle II". Nuclear Instruments and Methods in Physics Research A, Vol. 907, pp. 46–59, Nov. 2018.
- [18] T. Abe et al. (Belle II Collaboration). "Belle II Technical Design Report". KEK Report 2010-1, Nov. 2010.
- [19] 大内徳人. "SuperKEKB ビーム最終集束用超伝導電磁石システム (QCS) の建設". 高エネル ギー物理学研究者会議, 高エネルギーニュース, Vol.37, No.2, 2018 年 8 月.
- [20] 住澤一高. "Belle II KLM", 2014 年 5 月. 高エネルギー物理学研究者会議, 高エネルギー ニュース, Vol. 33, No. 1.
- [21] 海野祐士, 岩崎義仁, 中澤秀介. "Belle II 実験トリガーシステム". 高エネルギー物理学研究者 会議, 高エネルギーニュース, Vol.34, No.2, 2015 年 8 月.
- [22] 伊藤領介, 中尾幹彦, 山田悟, 鈴木聡, 今野智之, 樋口岳雄. "Belle II 実験のデータ収集システム". 高エネルギー物理学研究者会議, 高エネルギーニュース, Vol.33, No.3, 2014 年 11 月.
- [23] Hironari Miyazawa. "Baryon Number Changing Currents". Progress of Theoretical Physics, Vol. 36, Issue 6, pp. 1266–1276, Dec. 1966.
- [24] S.-K. Choi *et al.*. "Observation of a Narrow Charmoniumlike State in Exclusive $B^{\pm} \rightarrow K^{\pm} \pi^{+} \pi^{-} J/\psi$ Decays". *Physical Review Letters 91, 262001*, Dec. 2003.
- [25] Belle II 実験一般向け日本語ページ. https://belle2pb.kek.jp/images/Physic/03.gif.
- [26] KEK. "KEKB から SuperKEKB のタイムライン". KEK 公式ウェブページ, ニュースルーム , 2019 年 3 月. https://www.kek.jp/ja/newsroom/attic/20190311_superkekb_timeline_ja.png.
- [27] KEK. "2019 年の秋から 2020 年 6 月 22 日まで、5 分間隔で測定した SuperKEKB 加速器の瞬間ルミノシティの値". KEK 公式ウェブページ, ニュースルーム, 2020 年 6 月. https://www.kek.jp/ja/newsroom/assets_c/2020/06/20200626_supekekb_01-thumb-1004x546-17118.jpg.
- [28] SuperKEKB group web site, 2019 年 1 月. https://www-superkekb.kek.jp/img/ ProjectedLuminosity_v20190128.png.
- [29] S. Fukuda et al. (Super-Kamiokande Collaboration). "The Super-Kamiokande detector". Nuclear Instruments and Methods in Physics Research A, Vol. 501, pp. 418–462, Jun. 2002.
- [30] S. Hashimoto et al. (Belle Collaboration). "Letter of intent for KEK Super B Factory". K-REPORT-2004-4, Jun. 2004.

- [31] T. Makoto et al.. "Silica aerogel radiator for use in the A-RICH system utilized in the Belle II experiment". Nuclear Instruments and Methods in Physics Research A, Vol. 766, pp. 212–216, Dec. 2014.
- [32] S. Nishida et al.. "Study of an HAPD with 144 channels for the Aerogel RICH of the Belle upgrade". Nuclear Instruments and Methods in Physics Research A, Vol. 610, Issue 1, pp. 65–67, Oct. 2009.
- [33] S. Nishida et al.. "Development of the readout ASIC for the 144ch HAPD for aerogel RICH". Nuclear Instruments and Methods in Physics Research A, Vol. 623, Issue 1, pp. 504–506, Nov. 2010.
- [34] 岩田修一. "Belle II 実験用新型粒子識別装置 Aerogel RICH の開発". 修士論文. 首都大学東京大学院 理工学研究科, 2011 年.
- [35] 柿本詩織. "Belle II 実験 ARICH 検出器の光反射ミラー部における粒子識別性能の評価". 修 士論文. 首都大学東京大学院 理工学研究科, 2019 年.
- [36] S. Iwata et al.. "Particle identification performance of the prototype aerogel RICH counter for the Belle II experiment". Progress of Theoretical and Experimental Physics, Vol. 2016, Issue 3, Mar. 2016.
- [37] 西田昌平. "Belle II Aerogel RICH 検出器の建設と運転". 高エネルギー物理学研究者会議, 高エネルギーニュース, Vol.38, No.2, 2019 年 8 月.
- [38] 浜松ホトニクス. "MPPC (Multi-Pixel Photon Counter)", 2020 年 8 月. https://www. hamamatsu.com/resources/pdf/ssd/mppc_kapd0006j.pdf.
- [39] 浜松ホトニクス. "光半導体素子ハンドブック. 第 03 章 Si APD、MPPC". https://www. hamamatsu.com/resources/pdf/ssd/03_handbook.pdf.
- [40] 浜松ホトニクス. "MPPC arrays S13361-3050 series". https://www.hamamatsu.com/ resources/pdf/ssd/s13361-3050_series_kapd1054e.pdf.
- [41] 浜松ホトニクス. "MPPC S14160-1310PS/-1315PS/-3010PS/-3015PS". https://www. hamamatsu.com/resources/pdf/ssd/s14160-1310ps_etc_kapd1070e.pdf.
- [42] 浜松ホトニクス. "MPPC S14160/S14161 series". https://www.hamamatsu.com/resources/ pdf/ssd/s14160_s14161_series_kapd1064e.pdf.
- [43] Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer. "Analysis and Design of Analog Integrated Circuits", 1984.
- [44] TSMC. TSMC 公式ページ, ロジックテクノロジー. https://www.tsmc.com/img/ dedicatedFoundry/technology/logicTechnology_index.jpg.
- [45] Mentor Graphics. Tanner T-Spice シミュレーション. https://www.mentorg.co.jp/ tannereda/datasheets/TannerT-SpiceSimulation_ver3_DS_JA_2018Jan.pdf.
- [46] 浜松ホトニクス. "MPPC 用電源 C11204-01". https://www.hamamatsu.com/resources/pdf/ ssd/c11204-01_kacc1203j.pdf.
- [47] 植木泰生."リングイメージ型チェレンコフ検出器のための電子回路の開発とその性能評価".

修士論文. 首都大学東京大学院 理工学研究科, 2009年.